• Frontiers of Optoelectronics
  • Vol. 5, Issue 1, 21 (2012)
Lin GAN and Zhiyuan LI*
Author Affiliations
  • Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.1007/s12200-012-0192-y Cite this Article
    Lin GAN, Zhiyuan LI. Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices[J]. Frontiers of Optoelectronics, 2012, 5(1): 21 Copy Citation Text show less
    References

    [1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059-2062

    [2] Joannopoulos J D, Johnson S G, Winn J N, Meade R D. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press, 2008

    [3] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455(7211): 376-379

    [4] Yao J, Liu Z W, Liu Y M, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X. Optical negative refraction in bulk metamaterials of nanowires. Science, 2008, 321(5891): 930

    [5] Johnson S G, Fan S H, Villeneuve P R, Joannopoulos J D, Kolodziejski L A. Guided modes in photonic crystal slabs. Physical Review B: Condensed Matter and Materials Physics, 1999, 60(8): 5751-5758

    [6] Painter O, Lee R K, Scherer A, Yariv A, O’Brien J D, Dapkus P D, Kim I. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819-1821

    [7] McNab S J, Moll N, Vlasov YA. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Optics Express, 2003, 11(22): 2927-2939

    [8] Luo C Y, Johnson S G, Joannopoulos J D, Pendry J B. All-angle negative refraction without negative effective index. Physical Review B: Condensed Matter and Materials Physics, 2002, 65(20): 201104

    [9] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Self-collimating phenomena in photonic crystals. Applied Physics Letters, 1999, 74(9): 1212-1214

    [10] Yu X F, Fan S H. Bends and splitters for self-collimated beams in photonic crystals. Applied Physics Letters, 2003, 83(16): 3251-3253

    [11] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Superprism phenomena in photonic crystals: toward microscale lightwave circuits. Journal of Lightwave Technology, 1999, 17(11): 2032-2038

    [12] Baba T, Matsumoto T, Echizen M. Finite difference time domain study of high efficiency photonic crystal superprisms. Optics Express, 2004, 12(19): 4608-4613

    [13] Berrier A, Mulot M, Swillo M, Qiu M, Thylén L, Talneau A, Anand S. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Physical Review Letters, 2004, 93(7): 073902

    [14] Born M, Wolf E, Bhatia A B. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. New York: Cambridge University Press, 1999

    [15] Ho K M, Chan C T, Soukoulis C M. Existence of a photonic gap in periodic dielectric structures. Physical Review Letters, 1990, 65(25): 3152-3155

    [16] Johnson S, Joannopoulos J. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 2001, 8(3): 173-190

    [17] Li Z Y, Gu B Y, Yang G Z. Large absolute band gap in 2D anisotropic photonic crystals. Physical Review Letters, 1998, 81(12): 2574-2577

    [18] Li Z Y,Wang J, Gu B Y. Creation of partial band gaps in anisotropic photonic-band-gap structures. Physical Review B: Condensed Matter and Materials Physics, 1998, 58(7): 3721-3729

    [19] Pendry J B. Photonic Band Structures. Journal of Modern Optics, 1994, 41(2): 209-229

    [20] Chan C T, Yu Q L, Ho K M. Order-N spectral method for electromagnetic waves. Physical Review B: Condensed Matter and Materials Physics, 1995, 51(23): 16635-16642

    [21] Taflove A. Computational Electrodynamics: the Finite-Difference Time-Domain Method. Boston: Artech House, 1995

    [22] Nicorovici N A, McPhedran R C, Botten L C. Photonic band gaps for arrays of perfectly conducting cylinders. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 52(1): 1135-1145

    [23] Li L M, Zhang Z Q. Muitiple-scattering approach to finite-sized photonic band-gap materials. Physical Review B: Condensed Matter and Materials Physics, 1998, 58(15): 9587-9590

    [24] Li Z Y, Lin L L. Photonic band structures solved by a plane-wavebased transfer-matrix method. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2003, 67(4): 046607

    [25] Li Z Y, Lin L L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction. Physical Review B: Condensed Matter and Materials Physics, 2003, 68(24): 245110

    [26] Lin L L, Li Z Y, Ho K M. Lattice symmetry applied in transfermatrix methods for photonic crystals. Journal of Applied Physics, 2003, 94(2): 811-821

    [27] Li Z Y, Ho K M. Light propagation in semi-infinite photonic crystals and related waveguide structures. Physical Review B: Condensed Matter and Materials Physics, 2003, 68(15): 155101

    [28] Li Z Y, Lin L L, Ho K M. Light coupling with multimode photonic crystal waveguides. Applied Physics Letters, 2004, 84(23): 4699-4701

    [29] Che M, Li Z Y. Analysis of photonic crystal waveguide bends by a plane-wave transfer-matrix method. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(12): 125138

    [30] Che M, Li Z Y. Analysis of surface modes in photonic crystals by a plane-wave transfer-matrix method. Journal of the Optical Society of America a-Optics Image Science and Vision, 2008, 25(9): 2177-2184

    [31] Li Z Y, Ho K M. Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals. Physical Review B: Condensed Matter and Materials Physics, 2003, 67(16): 165104

    [32] Li J J, Li Z Y, Zhang D Z. Second harmonic generation in onedimensional nonlinear photonic crystals solved by the transfer matrix method. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(5): 056606

    [33] Li Z Y, Li J J, Zhang D Z. Nonlinear frequency conversion in twodimensional nonlinear photonic crystals solved by a plane-wavebased transfer-matrix method. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(19): 195127

    [34] Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 2010, 181(3): 687-702

    [35] Shinya A, Mitsugi S, Kuramochi E, Notomi M. Ultrasmall multichannel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide. Optics Express, 2005, 13(11): 4202-4209

    [36] Song B S, Nagashima T, Asano T, Noda S. Resonant-wavelength tuning of a nanocavity by subnanometer control of a twodimensional silicon-based photonic crystal slab structure. Applied Optics, 2009, 48(26): 4899-4903

    [37] Liu Y Z, Liu R J, Zhou C Z, Zhang D Z, Li Z Y. Gamma-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs. Optics Express, 2008, 16(26): 21483-21491

    [38] Zhou C Z, Liu Y Z, Li Z Y. Waveguide bend of 90° in twodimensional triangular lattice silicon photonic crystal slabs. Chinese Physics Letters, 2010, 27(8): 084203

    [39] Tao H H, Ren C, Liu Y Z,Wang Q K, Zhang D Z, Li Z Y. Near-field observation of anomalous optical propagation in photonic crystal coupled-cavity waveguides. Optics Express, 2010, 18(23): 23994-24002

    [40] Hennessy K, Badolato A,Winger M, Gerace D, Atatüre M, Gulde S, F lt S, Hu E L, Imamo lu A. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 2007, 445(7130): 896-899

    [41] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432(7014): 200-203

    [42] Akahane Y, Asano T, Song B S, Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 2003, 425(6961): 944-947

    [43] Ren C, Tian J, Feng S, Tao H H, Liu Y Z, Ren K, Li Z Y, Cheng B Y, Zhang D Z, Yang H F. High resolution three-port filter in two dimensional photonic crystal slabs. Optics Express, 2006, 14(21): 10014-10020

    [44] Liu Y Z, Feng S A, Tian J, Ren C, Tao H H, Li Z Y, Cheng B Y, Zhang D Z, Luo Q. Multichannel filters with shape designing in two-dimensional photonic crystal slabs. Journal of Applied Physics, 2007, 102(4): 043102

    [45] Liu Y Z, Liu R J, Feng S A, Ren C, Yang H F, Zhang D Z, Li Z Y. Multichannel filters via Γ-M and Γ-K waveguide coupling in twodimensional triangular-lattice photonic crystal slabs. Applied Lin GAN et al. Designs and experiments on infrared 2D silicon PhC slab devices 39 Physics Letters, 2008, 93(24): 241107

    [46] Gan L, Liu Y Z, Li J Y, Zhang Z B, Zhang D Z, Li Z Y. Ray trace visualization of negative refraction of light in two-dimensional airbridged silicon photonic crystal slabs at 1.55 μm. Optics Express, 2009, 17(12): 9962-9970

    [47] Nguyen HM, DundarMA, van der Heijden RW, van der Drift EW J M, Salemink H W M, Rogge S, Caro J. Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal. Optics Express, 2010, 18(7): 6437-6446

    [48] White T P, de Sterke C M, McPhedran R C, Botten L C. Highly efficient wide-angle transmission into uniform rod-type photonic crystals. Applied Physics Letters, 2005, 87(11): 111107

    [49] Zengerle R. Light-propagation in singly and doubly periodic planar wave-guides. Journal of Modern Optics, 1987, 34(12): 1589-1617

    Lin GAN, Zhiyuan LI. Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices[J]. Frontiers of Optoelectronics, 2012, 5(1): 21
    Download Citation