• Infrared and Laser Engineering
  • Vol. 47, Issue 11, 1121005 (2018)
Gu Wei1、2, Zhang Jinlan1, Peng Liang1, Cao Weiwu1, Deng Haihua1, and Tao Wenquan2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1121005 Cite this Article
    Gu Wei, Zhang Jinlan, Peng Liang, Cao Weiwu, Deng Haihua, Tao Wenquan. Photothermal characteristics of gold nanoparticles of different size, shape, and composition: application in photothermal therapy[J]. Infrared and Laser Engineering, 2018, 47(11): 1121005 Copy Citation Text show less
    References

    [1] Ferrari M. Cancer nanotechnology: opportunities and challenges [J]. Nat Rev Cancer, 2005, 5 (3): 161-171.

    [2] Cheng L, Wang C, Feng L, et al. Functional nanomaterials for phototherapies of cancer[J]. Chemical Reviews, 2014, 114 (21): 10869-10939.

    [3] Pitsillides C M, Joe E K, Wei X, et al. Selective cell targeting with light-absorbing microparticles and nanoparticles [J]. Biophysical Journal, 2003, 84 (6): 4023-4032.

    [4] Ritz J P, Roggan A, Isbert C, et al. Optical properties of native and coagulated porcine liver tissue between 400 and 2 400 nm[J]. Lasers in Surgery and Medicine, 2001, 29(3): 205-212.

    [5] Jain P K, El-Sayed I H, El-Sayed M A. Au nanoparticles target cancer [J]. Nano Today, 2007, 2(1): 18-29.

    [6] Boris K, Vladimir Z, Andrei M, et al. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters [J]. Nanotechnology, 2006, 17 (20): 5167.

    [7] Li Z, Huang H, Tang S, et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy [J]. Biomaterials, 2016, 74: 144-154.

    [8] Wang Y, Black K C L, Luehmann H, et al. Comparison Study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment [J]. ACS Nano, 2013, 7(3): 2068-2077.

    [9] Huang X, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J]. Journal of the American Chemical Society, 2006, 128(6): 2115-2120.

    [10] Yavuz M S, Cheng Y, Chen J, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light [J]. Nat Mater, 2009, 8(12): 935-939.

    [11] Kam N W S, O′Connell M, Wisdom J A, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33): 11600-11605.

    [12] Hessel C M, Pattani V P, Rasch M, et al. Copper selenide nanocrystals for photothermal therapy [J]. Nano Letters, 2011, 11(6): 2560-2566.

    [13] Ni D, Ding H, Liu S, et al. Drug delivery: superior intratumoral penetration of paclitaxel nanodots strengthens tumor restriction and metastasis prevention [J]. Small, 2015, 11(21): 2465-2465.

    [14] Tian B, Wang C, Zhang S, et al. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide [J]. ACS Nano, 2011, 5(9): 7000-7009.

    [15] Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proceedings of the National Academy of Sciences, 2003, 100(23): 13549-13554.

    [16] Loo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer [J]. Technology in Cancer Research & Treatment, 2004, 3(1): 33-40.

    [17] Kim J, Park S, Lee J E, et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy [J]. Angewandte Chemie International Edition, 2006, 45(46): 7754-7758.

    [18] Madsen S J, Baek S -K, Makkouk A R, et al. Macrophages as cell-based delivery systems for nanoshells in photothermal therapy [J]. Annals of Biomedical Engineering, 2011, 40(2): 507-515.

    [19] Dickerson E B, Dreaden E C, Huang X H, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice[J]. Cancer Letters, 2008, 269(1): 57-66.

    [20] Huang X, Neretina S, El-Sayed M A. Gold nanorods: from synthesis and properties to biological and biomedical applications [J]. Advanced Materials, 2009, 21(48): 4880-4910.

    [21] Maltzahn G, Park J -H, Agrawal A, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas [J]. Cancer Research, 2009, 69(9): 3892-3900.

    [22] Huang X, Tang S, Mu X, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties [J]. Nat Nano, 2011, 6(1): 28-32.

    [23] Pelaz B, Grazu V, Ibarra A, et al. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications [J]. Langmuir, 2012, 28 (24): 8965-8970.

    [24] Skrabalak S E, Chen J, Sun Y, et al. Gold nanocages: synthesis, properties, and applications [J]. Accounts of Chemical Research, 2008, 41(12): 1587-1595.

    [25] Xia Y, Li W, Cobley C M, et al. Gold nanocages: from synthesis to theranostic applications [J]. Accounts of Chemical Research, 2011, 44(10): 914-924.

    [26] Tian Q W, Tang M H, Sun Y G, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells[J]. Advanced Materials, 2011, 23(31): 3542-3547.

    [27] Julien R G N, Delphine M, Frédéric L, et al. Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake[J]. Nanotechnology, 2012, 23 (46): 465602.

    [28] Yuan H, Fales A M, Vo-Dinh T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance [J]. Journal of the American Chemical Society, 2012, 134(28): 11358-11361.

    [29] Yuan H, Khoury C G, Wilson C M, et al. In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2012, 8(8): 1355-1363.

    [30] Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine [J]. The Journal of Physical Chemistry B, 2006, 110(14): 7238-7248.

    [31] Huang X, El-Sayed M A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy[J]. Journal of Advanced Research, 2010, 1(1): 13-28.

    Gu Wei, Zhang Jinlan, Peng Liang, Cao Weiwu, Deng Haihua, Tao Wenquan. Photothermal characteristics of gold nanoparticles of different size, shape, and composition: application in photothermal therapy[J]. Infrared and Laser Engineering, 2018, 47(11): 1121005
    Download Citation