• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 5, 564 (2021)
Xiutao LOU1、*, Yue WANG2, Huihui LU1, and Yongkang DONG2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.05.002 Cite this Article
    LOU Xiutao, WANG Yue, LU Huihui, DONG Yongkang. Recent advances in spectroscopic gas sensing based on optical frequency-modulated continuous-wave techniques[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 564 Copy Citation Text show less
    References

    [1] Thorpe M J, Moll K D, Jones R J, et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection [J]. Science, 2006, 311(5767): 1595-1599.

    [2] Goldenstein C S, Spearrin R M, Jeffries J B, et al. Infrared laser-absorption sensing for combustion gases [J]. Progress in Energy and Combustion Science, 2017, 60: 132-176.

    [3] Yang S X, Jiang C B, Wei S H. Gas sensing in 2D materials [J]. Applied Physics Reviews, 2017, 4(2): 021304.

    [4] Hodgkinson J, Tatam R P. Optical gas sensing: A review [J]. Measurement Science and Technology, 2013, 24(1): 012004.

    [5] Liu X, Cheng S T, Liu H, et al. A survey on gas sensing technology [J]. Sensors, 2012, 12(7): 9635-9665.

    [6] Werle P. A review of recent advances in semiconductor laser based gas monitors [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998, 54(2): 197-236.

    [7] Hymans A J, Lait J. Analysis of a frequency-modulated continuous-wave ranging system [J]. Proceedings of the IEE Part B: Electronic and Communication Engineering, 1960, 107(34): 365-372.

    [8] Culshaw B, Giles I. Frequency modulated heterodyne optical fiber Sagnac interferometer [J]. IEEE Journal of Quantum Electronics, 1982, 18(4): 690-693.

    [9] Dong Y K, Zhu Z D, Tian X N, et al. Frequency-modulated continuous-wave LIDAR and 3D imaging by using linear frequency modulation based on injection locking [J]. Journal of Lightwave Technology, 2021, 39(8): 2275-2280.

    [10] Hariyama T, Sandborn P A M, Watanabe M, et al. High-accuracy range-sensing system based on FMCW using low-cost VCSEL [J]. Optics Express, 2018, 26(7): 9285-9297.

    [11] Lum D J, Knarr S H, Howell J C. Frequency-modulated continuous-wave LiDAR compressive depth-mapping [J]. Optics Express, 2018, 26(12): 15420-15435.

    [12] Soller B J, Gifford D K, Wolfe M S, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies [J]. Optics Express, 2005, 13(2): 666-674.

    [13] Ding Z Y, Wang C H, Liu K, et al. Distributed optical fiber sensors based on optical frequency domain reflectometry: A review [J]. Sensors, 2018, 18(4): 1072.

    [14] Werle P, Slemr F. Signal-to-noise ratio analysis in laser-absorption spectrometers using optical multipass cells [J]. Applied Optics, 1991, 30(4): 430-434.

    [15] White J U. Long optical paths of large aperture [J]. Journal of the Optical Society of America, 1942, 32(5): 285-288.

    [16] Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers [J]. Applied Optics, 1964, 3(4): 523-526.

    [17] Chernin S M, Barskaya E G. Optical multipass matrix systems [J]. Applied Optics, 1991, 30(1): 51-58.

    [18] Guo Y, Sun L Q. Compact optical multipass matrix system design based on slicer mirrors [J]. Applied Optics, 2018, 57(5): 1174-1181.

    [19] Silver J A. Simple dense-pattern optical multipass cells [J]. Applied Optics, 2005, 44(31): 6545-6556.

    [20] Das D, Wilson A C. Very long optical path-length from a compact multi-pass cell [J]. Applied Physics B-Lasers and Optics, 2011, 103(3): 749-754.

    [21] Cui R Y, Dong L, Wu H P, et al. Generalized optical design of two-spherical-mirror multi-pass cells with dense multi-circle spot patterns [J]. Applied Physics Letters, 2020, 116(9): 091103.

    [22] Zou M L, Yang Z, Sun L Q, et al. Acetylene sensing system based on wavelength modulation spectroscopy using a triple-row circular multi-pass cell [J]. Optics Express, 2020, 28(8): 11573-11582.

    [23] Tuzson B, Mangold M, Looser H, et al. Compact multipass optical cell for laser spectroscopy [J]. Optics Letters, 2013, 38(3): 257-259.

    [24] Graf M, Emmenegger L, Tuzson B. Compact, circular, and optically stable multipass cell for mobile laser absorption spectroscopy [J]. Optics Letters, 2018, 43(11): 2434-2437.

    [25] McManus J B, Kebabian P L, Zahniser M S. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy [J]. Applied Optics, 1995, 34(18): 3336-3348.

    [26] Nwaboh J A, Witzel O, Pogány A, et al. Optical path length calibration: A standard approach for use in absorption cell-based IR-spectrometric gas analysis [J]. International Journal of Spectroscopy, 2014, 2014: 132607.

    [27] Elandaloussi H, Rouillé C, Marie-Jeanne P, et al. Modified Sagnac interferometer for contact-free length measurement of a direct absorption cell [J]. Applied Optics, 2016, 55(8): 1971-1977.

    [28] Du Z H, Gao H, Cao X H. Direct high-precision measurement of the effective optical path length of multi-pass cell with optical frequency domain reflectometer [J]. Optics Express, 2016, 24(1): 417-426.

    [29] Lou X T, Chen C, Feng Y B, et al. Simultaneous measurement of gas absorption spectra and optical path lengths in a multipass cell by FMCW interferometry [J]. Optics Letters, 2018, 43(12): 2872-2875.

    [30] Datta S, Sarkar S. A review on different pipeline fault detection methods [J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 97-106.

    [31] Culshaw B, Kersey A. Fiber-optic sensing: A historical perspective [J]. Journal of Lightwave Technology, 2008, 26(9-12): 1064-1078.

    [32] Wang Z M, Chang T Y, Zeng X B, et al. Fiber optic multipoint remote methane sensing system based on pseudo differential detection [J]. Optics and Lasers in Engineering, 2019, 114: 50-59.

    [33] Mead M I, Popoola O A M, Stewart G B, et al. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks [J]. Atmospheric Environment, 2013, 70: 186-203.

    [34] Kim H J, Lee J H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview [J]. Sensors and Actuators B: Chemical, 2014, 192: 607-627.

    [35] Stewart G, Tandy C, Moodie D, et al. Design of a fibre optic multi-point sensor for gas detection [J]. Sensors and Actuators B-Chemical, 1998, 51(1-3): 227-232.

    [36] Wei J. Performance analysis of a time-division-multiplexed fiber-optic gas-sensor array by wavelength modulation of a distributed-feedback laser [J]. Applied Optics, 1999, 38(25): 5290-5297.

    [37] Floridia C, Rosolem J B, Fracarolli J P V, et al. Evaluation of environmental influences on a multi-point optical fiber methane leak monitoring system [J]. Remote Sensing, 2019, 11(10): 1249.

    [38] Zhang Y, Zhang M, Jin W. Multi-point, fiber-optic gas detection with intra-cavity spectroscopy [J]. Optics Communications, 2003, 220(4-6): 361-364.

    [39] Lu M F, Nonaka K, Kobayashi H, et al. Quasi-distributed region selectable gas sensing for long distance pipeline maintenance [J]. Measurement Science and Technology, 2013, 24(9): 095104.

    [40] Yu H B, Jin W, Ho H L, et al. Multiplexing of optical fiber gas sensors with a frequency-modulated continuous-wave technique [J]. Applied Optics, 2001, 40(7): 1011-1020.

    [41] Ye F, Qian L, Qi B. Multipoint chemical gas sensing using frequency-shifted interferometry [J]. Journal of Lightwave Technology, 2009, 27(23): 5356-5364.

    [42] Lou X T, Feng Y B, Chen C, et al. Multi-point spectroscopic gas sensing based on coherent FMCW interferometry [J]. Optics Express, 2020, 28(6): 9014-9026.

    [43] Manakasettharn S, Takahashi A, Kawamoto T, et al. Highly sensitive and exceptionally wide dynamic range detection of ammonia gas by indium hexacyanoferrate nanoparticles using FTIR spectroscopy [J]. Analytical Chemistry, 2018, 90(7): 4856-4862.

    [44] Sepman A, gren Y, Qu Z C, et al. Tunable diode laser absorption spectroscopy diagnostics of potassium, carbon monoxide, and soot in oxygen-enriched biomass combustion close to stoichiometry [J]. Energy & Fuels, 2019, 33(11): 11795-11803.

    [45] Zondlo M A, Paige M E, Massick S M, et al. Vertical cavity laser hygrometer for the National Science Foundation Gulfstream-V aircraft [J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D20309.

    [46] Witzel O, Klein A, Meffert C, et al. VCSEL-based, high-speed, in?situ TDLAS for in-cylinder water vapor measurements in IC engines [J]. Optics Express, 2013, 21(17): 19951-19965.

    [47] Dong L, Tittel F K, Li C G, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing [J]. Optics Express, 2016, 24(6): A528-A535.

    [48] Zéninari V, Parvitte B, Courtois D, et al. Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor [J]. Infrared Physics & Technology, 2003, 44(4): 253-261.

    [49] Wang Q, Wang Z, Ren W, et al. Fiber-ring laser intracavity QEPAS gas sensor using a 7.2 kHz quartz tuning fork [J]. Sensors and Actuators B-Chemical, 2018, 268: 512-518.

    [50] Jin W, Cao Y C, Yang F, et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range [J]. Nature Communications, 2015, 6: 6767.

    [51] Zhao P C, Zhao Y, Bao H H, et al. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber [J]. Nature Communications, 2020, 11(1): 847.

    [52] Hanf S, Bgzi T, Keiner R, et al. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath [J]. Analytical Chemistry, 2015, 87(2): 982-988.

    [53] Qi Y, Zhao Y, Bao H H, et al. Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range [J]. Optica, 2019, 6(5): 570-576.

    [54] Galli I, Bartalini S, Ballerini R, et al. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity [J]. Optica, 2016, 3(4): 385-388.

    [55] Pogány A, Wagner S, Werhahn O, et al. Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor [J]. Applied Spectroscopy, 2015, 69(2): 257-268.

    [56] Wang Z, Du Y J, Ding Y J, et al. A wide-range and calibration-free spectrometer which combines wavelength modulation and direct absorption spectroscopy with cavity ringdown spectroscopy [J]. Sensors, 2020, 20(3): 585.

    [57] Dong M, Zheng C T, Yao D, et al. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSR-HC) [J]. Optics Express, 2018, 26(9): 12081-12091.

    [58] Lou X T, Feng Y B, Yang S H, et al. Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy [J]. Photonics Research, 2021, 9(2): 193-201.

    LOU Xiutao, WANG Yue, LU Huihui, DONG Yongkang. Recent advances in spectroscopic gas sensing based on optical frequency-modulated continuous-wave techniques[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 564
    Download Citation