• Acta Optica Sinica
  • Vol. 38, Issue 2, 0216001 (2018)
Yuan Yuan1、2, Yanan Xie1、2、*, and Xin Li1、2
Author Affiliations
  • 1 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China
  • 2 School of Communication & Information Engineering, Shanghai University, Shanghai 200444, China;
  • show less
    DOI: 10.3788/AOS201838.0216001 Cite this Article Set citation alerts
    Yuan Yuan, Yanan Xie, Xin Li. Frequency-Tunable Graphene Patch Antenna in Terahertz Regime[J]. Acta Optica Sinica, 2018, 38(2): 0216001 Copy Citation Text show less
    Surface conductivity versus chemical potential of graphene at room temperature
    Fig. 1. Surface conductivity versus chemical potential of graphene at room temperature
    Relationship between bias electric field and chemical potential at εb=3.5 F/m
    Fig. 2. Relationship between bias electric field and chemical potential at εb=3.5 F/m
    Equivalent circuit model of rectangular microstrip antenna
    Fig. 3. Equivalent circuit model of rectangular microstrip antenna
    Input resistance curve of graphene patch antenna
    Fig. 4. Input resistance curve of graphene patch antenna
    Input reactance curve of graphene patch antenna
    Fig. 5. Input reactance curve of graphene patch antenna
    Top view of frequency-reconfigurable graphene antenna
    Fig. 6. Top view of frequency-reconfigurable graphene antenna
    Left view of frequency-reconfigurable graphene antenna
    Fig. 7. Left view of frequency-reconfigurable graphene antenna
    Return loss of antenna
    Fig. 8. Return loss of antenna
    Radiation patterns of graphene antenna under different resonance frequencies. (a) 695.55 GHz; (b) 698.10 GHz; (c) 701.55 GHz; (d) 703.15 GHz; (e) 705.05 GHz
    Fig. 9. Radiation patterns of graphene antenna under different resonance frequencies. (a) 695.55 GHz; (b) 698.10 GHz; (c) 701.55 GHz; (d) 703.15 GHz; (e) 705.05 GHz
    Chemical potential versus resonance frequency
    Fig. 10. Chemical potential versus resonance frequency
    ComponentParameterValue /μm
    PatchLength L98.5
    Width W133.2
    Microstrip lineLength L'116.98
    Length L'230
    Length L'313
    Width W'16
    Width W'26
    Width W'320
    Substrate (polyimide)Length Ls210
    Width Ws433.5
    Height h18
    SiliconHeight h10.525
    Table 1. Parameters of frequency-reconfigurable graphene antenna
    Resonance frequency /GHzChemical potential /eVAbsolute impedance bandwidth /GHzRelative impedance bandwidth /%Maximum radiation gain /dBDirectivity factor /dBRadiation efficiency /%
    695.550678.25-713.655.085.828.0172.56
    698.100.1680.75-715.955.046.338.0279.00
    701.550.25685.10-718.554.776.668.0183.10
    703.150.45687.05-720.054.706.808.0184.80
    705.051689.95-721.754.636.928.0186.48
    Table 2. Radiation performances of frequency-reconfigurable graphene antenna
    fres /GHzμc /eVGs1 /μSGs2 /mSCs1 /aFCs2 /fFC /fF
    695.55011.70721.0598409.102.36891.3
    698.100.111.79461.0677408.992.33870.2
    701.550.2511.91071.0782408.852.32780.9
    703.150.4511.96101.0827408.792.32400.9
    705.05112.02861.0889408.712.32120.9
    Table 3. Parameters in equivalent circuit of frequency-reconfigurable graphene antenna
    ParameterRef. [11]Ref. [23]Ref. [24]Ref. [25]Ref. [26]
    Resonance frequency /GHz7507706000150072014251325
    Impedance bandwidth /%6.676.6712.83-13.36--
    Maximum radiation gain /dB5.095.073.2703.852--
    Directivity factor /dB5.715.707.56-6.456--
    Radiation efficiency /%86.5886.4337.17-54.94344.5
    Table 4. Radiation performances of existing antennas from different references
    Yuan Yuan, Yanan Xie, Xin Li. Frequency-Tunable Graphene Patch Antenna in Terahertz Regime[J]. Acta Optica Sinica, 2018, 38(2): 0216001
    Download Citation