• Chinese Optics Letters
  • Vol. 19, Issue 8, 081405 (2021)
Mengyu Zhang, Hao Chen, Jinde Yin, Jintao Wang, Jinzhang Wang, and Peiguang Yan*
Author Affiliations
  • Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.3788/COL202119.081405 Cite this Article Set citation alerts
    Mengyu Zhang, Hao Chen, Jinde Yin, Jintao Wang, Jinzhang Wang, Peiguang Yan. Recent development of saturable absorbers for ultrafast lasers [Invited][J]. Chinese Optics Letters, 2021, 19(8): 081405 Copy Citation Text show less
    References

    [1] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493(1960).

    [2] A. Javan, W. R. Bennett, D. R. Herriott. Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture. Phys. Rev. Lett., 6, 106(1961).

    [3] E. Snitzer. Optical maser action of Nd+3 in a barium crown glass. Phys. Rev. Lett., 7, 444(1961).

    [4] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, R. O. Carlson. Coherent light emission from GaAs junctions. Phys. Rev. Lett., 9, 366(1962).

    [5] W. Dietel, E. Döpel, D. Kühlke, B. Wilhelmi. Pulses in the femtosecond range from a cw dye ring laser in the colliding pulse mode-locking (CPM) regime with down-chirp. Opt. Commun., 43, 433(1982).

    [6] U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett., 24, 411(1999).

    [7] M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane. Generation of 11-fs pulses from a self-mode-locked Ti: sapphire laser. Opt. Lett., 18, 977(1993).

    [8] A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipöcs. Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett., 20, 602(1995).

    [9] P. Antoine, A. L’huillier, M. Lewenstein. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett., 77, 1234(1996).

    [10] K. T. Kim, C. M. Kim, M. G. Baik, G. Umesh, C. H. Nam. Single sub 50 attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion.. Phys. Rev. A, 69, 051805(2004).

    [11] A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, A. M. Sergeev. Horizons of petawatt laser technology. Phys.-Uspekhi, 54, 9(2011).

    [12] F. Lureau, G. Matras, S. Laux, C. Radier, O. Chalus, O. Casagrande, C. Derycke, S. Ricaud, P. Calvet, L. Boudjemaa, C. S. Boisson, D. Ursescu, I. Dancus. 10 petawatt laser system for extreme light physics, ATh1A.5(2019).

    [13] A. H. Zewail. Laser femtochemistry. Science, 242, 1645(1988).

    [14] H. Jung, R. Stoll, X. Guo, D. Fischer, H. X. Tang. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica, 1, 396(2014).

    [15] M. Suh, Q. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 354, 600(2016).

    [16] J. Wu, Y. Xu, J. Xu, X. Wei, A. Chan, A. Tang, A. Lau, B. Chung, H. Shum, E. Lam, K. Wong, K. Tsia. Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light Sci. Appl., 6, e16196(2017).

    [17] M. Hassan, J. Baskin, B. Liao, A. H. Zewail. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nat. Photon., 11, 425(2017).

    [18] K. Sugioka, Y. Cheng. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).

    [19] G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, N. R. Newbury. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 1, 290(2014).

    [20] A. Rohrbacher, O. E. Olarte, V. Villamaina, P. L. Alvarez, B. Resan. Multiphoton imaging with blue-diode-pumped SESAM-modelocked Ti:sapphire oscillator generating 5 nJ 82 fs pulses. Opt. Express, 25, 10677(2017).

    [21] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831(2003).

    [22] O. Okhotnikov, A. Grudinin, M. Pessa. Ultra-fast fiber laser systems based on SESAM technology: new horizons and applications. New J. Phys., 6, 177(2004).

    [23] Y. Mao, X. Tong, Z. Wang, L. Zhan, P. Hu, L. Chen. Wavelength-tunable 10 GHz actively harmonic mode-locked fiber laser based on semiconductor optical amplifier. Appl. Phys. B, 121, 517(2015).

    [24] A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, D. W. Prather. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810(2018).

    [25] J. Qin, R. Dai, Y. Li, Y. Meng, Y. Xu, S. Zhu, F. Wang. 20 GHz actively mode-locked thulium fiber laser. Opt. Express, 26, 25769(2018).

    [26] W. H. Glenn, M. J. Brienza, A. J. DeMaria. Mode locking of an organic dye laser. Appl. Phys. Lett., 12, 54(1968).

    [27] C. V. Shank, E. P. Ippen. Subpicosecond kilowatt pulses from a mode-locked cw dye laser. Appl. Phys. Lett., 24, 373(1974).

    [28] C. Ausschnitt, R. Jain, J. Heritage. Cavity length detuning characteristics of the synchronously mode-locked CW dye laser. IEEE J. Quantum Elect., 15, 912(1979).

    [29] S. Vasilyev, M. Mirov, V. Gapontsev. Kerr-lens mode-locked femtosecond polycrystalline Cr2+: ZnS and Cr2+: ZnSe lasers. Opt. Express, 22, 5118(2014).

    [30] Z.-Y. Gao, J.-F. Zhu, K. Wang, J.-L. Wang, Z.-H. Wang, Z.-Y. Wei. Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser. Chin. Phys. B, 25, 024205(2016).

    [31] S. Ghanbari, R. Akbari, A. Major. Femtosecond Kerr-lens mode-locked alexandrite laser. Opt. Express, 24, 14836(2016).

    [32] U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus der Au. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Quantum Electron., 2, 435(1996).

    [33] F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, A. C. Ferrari. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 3, 738(2008).

    [34] G. Sobon. “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [Invited]. Photon. Res., 3, A56(2015).

    [35] T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari. Nanotube–polymer composites for ultrafast photonics. Adv. Mater., 21, 3874(2009).

    [36] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nature Photon., 7, 842(2013).

    [37] G. Wang, A. A. Baker-Murray, W. J. Blau. Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photon. Rev., 13, 1800282(2019).

    [38] B. Guo, Q. Xiao, S. Wang, H. Zhang. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photon. Rev., 13, 1800327(2019).

    [39] U. Keller, W. H. Knox, H. Roskos. Coupled-cavity resonant passive mode-locked (RPM) Ti:sapphire laser. Opt. Lett., 15, 1377(1990).

    [40] I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi. Self-starting 6.5-fs pulses from a Ti:sapphire laser. Opt. Lett., 22, 1009(1997).

    [41] F. X. Kurtner, J. A. der Au, U. Keller. Mode-locking with slow and fast saturable absorbers – what’s the difference?. IEEE J. Sel. Top. Quantum Electron, 4, 159(1998).

    [42] R. Paschotta, U. Keller. Passive mode-locking with slow saturable absorbers. Appl. Phys. B, 73, 653(2001).

    [43] G. J. Spühler, K.J. Weingarten, R. Grange, L. Krainer, M. Halml, V. Liverini, M. Golling, S. Schon, U. Keller. Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B, 81, 27(2005).

    [44] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller. Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc. Am. B, 16, 46(1999).

    [45] S. A. Campbell. The Science and Engineering of Microelectronic Fabrication(2001).

    [46] E. U. Rafailov, A. A. Lagatsky, S. A. Zolotovskaya, W. Sibbett. Compact and efficient mode-locked lasers based on QD-SESAMs. Proc. SPIE, 6998, 69980B(2008).

    [47] S. Iijima. Synthesis of carbon nanotubes. Nature, 354, 56(1991).

    [48] H.-S. P. Wong, D. Akinwande. Carbon Nanotube and Graphene Device Physics(2011).

    [49] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker. Electronic structure of atomically resolved carbon nanotubes. Nature, 391, 59(1998).

    [50] S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, M. S. Strano. Excited-state carrier lifetime in single-walled carbon nanotubes. Phys. Rev. B, 71, 033402(2005).

    [51] Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, G. R. Fleming. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. J. Chem. Phys., 120, 3368(2004).

    [52] S. Set, H. Yaguchi, M. Jablonski, Y. Tanaka, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba. A noise suppressing saturable absorber at 1550 nm based on carbon nanotube technology, 723.

    [53] S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, O. Okhotnikov. Carbon nanotube films for ultrafast broadband technology. Opt. Express, 17, 2358(2009).

    [54] M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. Konov, E. M. Dianov. Mode-locked 1.93 µm thulium fiber laser with a carbon nanotube absorber. Opt. Lett., 33, 1336(2008).

    [55] L. Huang, Y. Zhang, X. Liu. Dynamics of carbon nanotube-based mode-locking fiber lasers. Nanophotonics, 9, 2731(2020).

    [56] C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, Y. Liu. Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 µm based on carbon nanotube. IEEE J Quantum Electron., 25, 1100206(2019).

    [57] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim. Fine structure constant defines visual transparency of graphene. Science, 320, 1308(2008).

    [58] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803(2010).

    [59] G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski. Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers. Opt. Mater. Express, 5, 2884(2015).

    [60] K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, A. M. Malvezzi. Femtosecond carrier dynamics in graphite. Phys. Rev. B, 42, 2842(1990).

    [61] M. Breusing, C. Ropers, T. Elsaesser. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett., 102, 086809(2009).

    [62] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater, 19, 3077(2009).

    [63] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [64] I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, F. Rotermund. Mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber. Appl. Phys. Express, 5, 032701(2013).

    [65] H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express, 17, 17630(2009).

    [66] D. I. M. Zen, N. Saidin, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. A. Ismail, K. Dimyati, A. Halder, M. C. Paul, S. Das, M. Pal, S. K. Bhadra. Mode-locked thulium bismuth codoped fiber laser using graphene saturable absorber in ring cavity: reply. Appl. Opt., 52, 1226(2013).

    [67] G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Fe2+: ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 µm. Opt. Mater. Express, 3, 1365(2013).

    [68] A. Malouf, O. Henderson-Sapir, S. Set, S. Yamashita, D. J. Ottaway. Two-photon absorption and saturable absorption of mid-IR in graphene. Appl. Phys. Lett., 114, 091111(2019).

    [69] M. Xu, T. Liang, M. Shi, H. Chen. Graphene-like two-dimensional materials. Chem. Rev., 113, 3766(2013).

    [70] R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, J. R. Taylor. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt. Express, 22, 31113(2014).

    [71] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [72] A. Kuc, N. Zibouche, T. Heine. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B, 83, 245213(2011).

    [73] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, J. D. Lee. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B, 85, 033305(2012).

    [74] G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, U. Keller. Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B, 81, 27(2005).

    [75] D. J. H. C. Maas, A.-R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller. Growth parameter optimization for fast quantum dot SESAMs. Opt. Express, 16, 18646(2008).

    [76] B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, U. Keller. Recent advances in ultrafast semiconductor disk lasers. Light: Sci. Appl., 4, e310(2015).

    [77] F. Saltarelli, A. Diebold, I. J. Graumann, C. R. Phillips, U. Keller. Self-phase modulation cancellation in a high-power ultrafast thin-disk laser oscillator. Optica, 5, 1603(2018).

    [78] M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller. Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL). Opt. Express, 21, 24904(2013).

    [79] X. Wang, Y. J. Zhu, C. Jiang, Y. X. Guo, X. T. Ge, H. M. Chen, J. Q. Ning, C. C. Zheng, Y. Peng, X. H. Li, Z. Y. Zhang. InAs/GaAs quantum dot semiconductor saturable absorber for controllable dual-wavelength passively Q-switched fiber laser. Opt. Express, 27, 20649(2019).

    [80] T. Finke, J. Nürnberg, V. Sichkovskyi, M. Golling, U. Keller, J. P. Reithmaier. Temperature resistant fast InxGa1−xAs/GaAs quantum dot saturable absorber for the epitaxial integration into semiconductor surface emitting lasers. Opt. Express, 28, 20954(2020).

    [81] S.-H. Kwona, D. H. Song, I.-S. Kim, D.-K. Ko. Operating characteristics of a SESAM-assisted mode-locked laser oscillator with the location of the SESAM position. Opt. Laser. Technol., 133, 106560(2021).

    [82] A. E. H. Oehler, T. Südmeyer, K. J. Weingarten, U. Keller. 100 GHz passively mode-locked Er:Yb:glass laser at 1.5 µm with 1.6-ps pulses. Opt. Express, 16, 21930(2008).

    [83] U. Keller. Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl. Phys. B, 100, 15(2010).

    [84] C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, U. Keller. Ultrafast thin-disk laser with 80 µJ pulse energy and 242 W of average power. Opt. Lett., 39, 9(2014).

    [85] F. Saltarelli, I. J. Graumann, L. Lang, D. Bauer, C. R. Phillips, U. Keller. Power scaling of ultrafast oscillators: 350-W average-power sub-picosecond thin-disk laser. Opt. Express, 27, 31465(2019).

    [86] K. A. Williams, M. G. Thompson, I. H. White. Long-wavelength monolithic mode-locked diode lasers. New J. Phys., 6, 179(2004).

    [87] E. A. Avrutin, J. H. Marsh, E. L. Portnoi. Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications. IEEE Proc. Optoelectron., 147, 251(2000).

    [88] U. Keller, A. C. Tropper. Passively modelocked surface-emitting semiconductor lasers. Phys. Rep., 429, 67(2006).

    [89] C. G. E. Alfieri, D. Waldburger, M. Golling, U. Keller. High-power sub-300-femtosecond quantum dot semiconductor disk lasers. IEEE Photon. Technol. Lett, 30, 525(2018).

    [90] A. Laurain, I. Kilen, J. Hader, A. R. Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, J. V. Moloney. Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses. Appl. Phys. Lett., 113, 121113(2018).

    [91] M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, J. V. Moloney. Passively mode locked VECSEL emitting 682 fs pulses with 5.1 W of average output power. Electron Lett., 48, 588(2012).

    [92] D. Lorenser, D. J. H. C. Maas, H. J. Unold, A-R. Bellancourt, B. Rudi, E. Gini, D. Ebling, U. Keller. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power. IEEE J. Quantum Electron., 42, 838(2006).

    [93] K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz. 4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation. Opt. Express, 21, 1599(2013).

    [94] D. J. H. C. Maas, A-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, U. Keller. Vertical integration of ultrafast semiconductor lasers. Appl. Phys. B, 88, 493(2007).

    [95] M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller. Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser. Opt. Express, 22, 6099(2014).

    [96] B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power. Opt. Express, 18, 27582(2010).

    [97] C. G. E. Alfieri, D. Waldburger, J. Nürnberg, M. Golling, U. Keller. Sub-150-fs pulses from an optically pumped broadband mode locked integrated external-cavity surface emitting laser. Opt. Lett., 44, 25(2019).

    [98] F. Labaye, M. Gaponenko, V. J. Wittwer, A. Diebold, C. Paradis, N. Modsching, L. Merceron, F. Emaury, I. J. Graumann, C. R. Phillips, C. J. Saraceno, C. Kränkel, U. Keller, T. Südmeyer. Extreme ultraviolet light source at a megahertz repetition rate based on high-harmonic generation inside a mode-locked thin-disk laser oscillator. Opt. Lett., 42, 5170(2017).

    [99] A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, W. Sibbett. Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 µm. Opt. Lett., 35, 172(2010).

    [100] V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, U. Griebner. Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs. Opt. Express, 23, 4614(2015).

    [101] K. Merghem, R. Teissier, G. Aubin, A. M. Monakhov, A. Ramdane, A. N. Baranov. Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 µm. Appl. Phys. Lett., 107, 111109(2015).

    [102] P. Holl, M. Rattunde, S. Adler, S. Kaspar, W. Bronner, A. Bachle, R. Aidam, J. Wagner. Recent advances in power scaling of GaSb-based semiconductor disk lasers. IEEE J. Sel. Top. Quantum Electron, 21, 324(2015).

    [103] Y. Zhao, Y. Wang, X. Zhang, X. Mateos, Z. Pan, P. Loiko, W. Zhou, X. Xu, J. Xu, D. Shen, S. Suomalainen, A. Härkönen, M. Guina, U. Griebner, V. Petrov. 87  fs mode-locked Tm,Ho:CaYAlO4 laser at ∼2043  nm. Opt. Lett., 43, 915(2018).

    [104] P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, G. Huber. High-power red, orange, and green Pr3+:LiYF4 lasers. Opt. Lett., 39, 3193(2014).

    [105] K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, T. Südmeyer. Green-diode-pumped femtosecond Ti:sapphire laser with up to 450 mW average power. Opt. Express, 23, 30043(2015).

    [106] Y. Zhang, V. Petrov, U. Griebner, X. Zhang, H. Yu, H. Zhang, J. Liu. Diode-pumped SESAM mode-locked Yb:CLNGG laser,”. Opt. Laser Technol., 69, 144(2015).

    [107] J. Ma, Z. Pan, J. Wang, H. Yuan, H. Cai, G. Xie, L. Qian, D. Shen, D. Tang. Generation of sub-50fs soliton pulses from a mode-locked Yb, Na:CNGG disordered crystal laser. Opt. Express, 25, 14968(2017).

    [108] A. S. Mayer, C. R. Phillips, U. Keller. Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal. Nat. Commun., 8, 1673(2017).

    [109] R. Akbari, K. A. Fedorova, E. U. Rafailov, A. Major. Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking. Appl. Phys. B, 123, 123(2017).

    [110] R. Grange, S. Zeller, M. Haiml, O. Ostinelli, E. Gini, S. Schon, U. Keller. Antimonide semiconductor saturable absorber for passive mode locking of a 1.5-µm Er:Yb:glass laser at 10 GHz. IEEE Photon. Technol. Lett, 18, 805(2006).

    [111] A. Choudhary, A. A. Lagatsky, Z. Y. Zhang, K. J. Zhou, Q. Wang, R. A. Hogg, K. Pradeesh, E. U. Rafailov, W. Sibbett, C. T. A. Brown, D. P. Shepherd. A diode-pumped 1.5 µm waveguide laser mode-locked at 6.8 GHz by a quantum dot SESAM. Laser Phys. Lett., 10, 105803(2013).

    [112] N. K. Stevenson, C. T. A. Brown, J.-M. Hopkins, M. D. Dawson, C. Kränkel, A. A. Lagatsky. Diode-pumped femtosecond Tm3+-doped LuScO3 laser near 2.1  µm. Opt. Lett., 43, 1287(2018).

    [113] X. Bu, Y. Shi, J. Xu, H. Li, P. Wang. 408-fs SESAM mode locked Cr:ZnSe laser. Proc. SPIE, 10619, 1061903(2018).

    [114] Y. Wang, W. Jing, P. Loiko, Y. Zhao, H. Huang, X. Mateos, S. Suomalainen, A. Härkönen, M. Guina, U. Griebner, V. Petrov. Sub-10 optical-cycle passively mode-locked Tm:(Lu2/3Sc1/3)2O3 ceramic laser at 2 µm. Opt. Express, 26, 10299(2018).

    [115] Y. Wang, Y. Zhao, Z. Pan, S. Suomalainen, A. Härkönen, M. Guina, U. Griebner, L. Wang, P. Loiko, X. Mateos, W. Chen, V. Petrov. 73-fs SESAM mode-locked Tm,Ho:CNGG laser at 2061 nm. Proc. SPIE, 11259, 1125929(2020).

    [116] E. Sorokin, I. T. Sorokina. Femtosecond operation and random quasi-phase-matched self-doubling of ceramic Cr:ZnSe laser, CTuGG2(2010).

    [117] E. Sorokin, N. Tolstik, K. I. Schaffers, I. T. Sorokina. Femtosecond SESAM-mode locked Cr:ZnS laser. Opt. Express, 20, 28947(2012).

    [118] I. J. Graumann, A. Diebold, C. G. E. Alfieri, F. Emaury, B. Deppe, M. Golling, D. Bauer, D. Sutter, C. Kränkel, C. J. Saraceno, C. R. Phillips, U. Keller. Peak-power scaling of femtosecond Yb:Lu2O3 thin-disk lasers. Opt. Express, 25, 22519(2017).

    [119] F. Saltarelli, A. Diebold, I. J. Graumann, C. R. Phillips, U. Keller. Self-phase modulation cancellation in a high-power ultrafast thin-disk laser oscillator. Opt. Lett., 5, 25(2018).

    [120] A. Härkönen, S. Suomalainen, A. Rantamäki, J. Nikkinen, Y. Wang, U. Griebner, G. Steinmeyer, M. Guina. 1.34  µm VECSEL mode-locked with a GaSb-based SESAM. Opt. Lett., 43, 3353(2018).

    [121] T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, Y. Sakakibara. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Opt. Express, 13, 8025(2005).

    [122] D. V. Khudyakov, A. S. Lobach, V. A. Nadtochenko. Passive mode locking in a Ti:sapphire laser using a single-walled carbon nanotube saturable absorber at a wavelength of 810 nm. Opt. Lett., 35, 2675(2010).

    [123] I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D. Yeom, K. Kim, F. Rotermund. Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser. Opt. Express, 19, 7833(2011).

    [124] A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, U. Griebner. Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber. Opt. Lett., 33, 729(2008).

    [125] S. Y. Choi, T. Calmano, F. Rotermund, C. Kränkel. 2-GHz carbon nanotube mode-locked Yb:YAG channel waveguide laser. Opt. Express, 26, 5140(2018).

    [126] W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, F. Rotermund. Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber. Opt. Lett., 33, 2449(2008).

    [127] Z. Pan, Y. Wang, Y. Zhao, H. Yuan, X. Dai, H. Cai, J. E. Bae, S. Y. Choi, F. Rotermund, X. Mateos, J. M. Serres, P. Loiko, U. Griebner, V. Petrov. Generation of 84-fs pulses from a mode-locked Tm:CNNGG disordered garnet crystal laser. Photon. Res., 6, 800(2018).

    [128] N. Tolstik, O. Okhotnikov, E. Sorokin, I. T. Sorokina. Femtosecond Cr:ZnS laser at 2.35 µm mode-locked by carbon nanotubes. Proc. SPIE, 8959, 89591A(2014).

    [129] W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz. Passive mode-locking of a Tm-doped bulk laser near 2 µm using a carbon nanotube saturable absorber. Opt. Express, 17, 11007(2009).

    [130] J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, J. Wang. Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers. Sci. Rep., 4, 5016(2014).

    [131] A. G. Khrimchuk, P. A. Obraztsov. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene. Sci. Rep., 5, 11172(2015).

    [132] N. Tolstik, E. Sorokin, I. T. Sorokina. Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration. Opt. Express, 22, 5564(2014).

    [133] C. Feng, X. Zhang, J. Wang, Z. Liu, Z. Cong, H. Rao, Q. Wang, J. Fang. Passively mode-locked Nd3+:YVO4 laser using a molybdenum disulfide as saturable absorber. Opt. Mater. Express, 6, 1358(2016).

    [134] L. Tao, X. Huang, J. He, Y. Lou, L. Zeng, Y. Li, H. Long, J. Li, L. Zhang, Y. H. Tsang. Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd:LuVO4 laser. Photon. Res., 6, 750(2018).

    [135] K. Seger, N. Meiser, S. Y. Choi, B. H. Jung, D.-I. Yeom, F. Rotermund, O. Okhotnikov, F. Laurell, V. Pasiskevicius. Carbon nanotube mode-locked optically-pumped semiconductor disk laser. Opt. Express, 21, 17806(2013).

    [136] C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, U. Keller. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. Opt. Express, 21, 31548(2013).

    [137] S. Husaini, R. G. Bedford. Graphene saturable absorber for high power semiconductor disk laser mode-locking. Appl. Phys. Lett., 104, 161107(2014).

    [138] M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, A. A. Onushchenko. Compact passively Q-switched diode-pumped Tm:KY(WO4)2 laser with 8 ns/30 µJ pulses. Laser Phys. Lett., 7, 286(2010).

    [139] M. Zhang, R. C. T. Howe, R. I. Edmund, J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, T. Hasan. Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res., 8, 1522(2015).

    [140] M. Yi, Z. Shen. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A, 3, 11700(2015).

    [141] H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, K. P. Loh. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express, 22, 7249(2014).

    [142] D. Steinberg, R. M. Gerosa, F. N. Pellicer, J. D. Zapata, S. H. Domingues, E. A. Thoroh de Souza, L. A. M. Saito. Graphene oxide and reduced graphene oxide as saturable absorbers onto D-shaped fibers for sub 200-fs EDFL mode-locking. Opt. Mater. Express, 8, 144(2018).

    [143] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, V. Nicolosi. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331, 568(2011).

    [144] T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, H. Zhang. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photon. Res., 8, 78(2020).

    [145] D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, A. C. Ferrari. 74-fs nanotube-mode-locked fiber laser. Appl. Phys. Lett., 101, 153107(2012).

    [146] D. Mao, B. Jiang, W. Zhang, J. Zhao. Pulse-state switchable fiber laser mode-locked by carbon nanotubes. IEEE Photon. Technol. Lett., 27, 253(2015).

    [147] Y. Meng, Y. Li, Y. Xu, F. Wang. Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range. Sci. Rep., 7, 45109(2017).

    [148] J. W. Nicholson, R. S. Windeler, D. J. DiGiovanni. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt. Express, 15, 9176(2007).

    [149] G. Sobon, A. Duzynska, M. Świniarski, J. Judek, J. Sotor, M. Zdrojek. CNT-based saturable absorbers with scalable modulation depth for thulium-doped fiber lasers operating at 1.9 µm. Sci. Rep., 7, 45491(2017).

    [150] W. Liu, M. Liu, X. Chen, T. Shen, M. Lei, J. Guo, H. Deng, W. Zhang, C. Dai, X. Zhang, Z. Wei. Ultrafast photonics of two dimensional AuTe2Se4/3 in fiber lasers. Commun. Phys., 3, 15(2020).

    [151] K. Kieu, M. Mansuripur. Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. Opt. Lett., 32, 2242(2007).

    [152] Y.-W. Song, S. Yamashita, S. Maruyama. Single-walled carbon nanotubes for high-energy optical pulse formation. Appl. Phys. Lett., 92, 021115(2008).

    [153] M. Liu, X.-W. Zheng, Y.-L. Qi, H. Liu, A.-P. Luo, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, H. Zhang. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser. Opt. Express, 22, 22841(2014).

    [154] M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, S. Ruan. Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics. APL Photon., 4, 090801(2019).

    [155] J. D. Yin, F. X. Zhu, J. T. Lai, H. Chen, M. Y. Zhang, J. Q. Zhang, J. T. Wang, T. C. He, B. Zhang, J. P. Yuan, P. G. Yan, S. C. Ruan. Hafnium sulfide nanosheets for ultrafast photonic device. Adv. Opt. Mater., 7, 1801303(2018).

    [156] X. Wu, Z. W. Zhou, J. D. Yin, M. Zhang, L. L. Zhou, Q. X. Na, J. T. Wang, Y. Yu, J. B. Yang, R. H. Chi. Ultrafast fiber laser based on HfSe2 saturable absorber. Nanotechonlogy, 31, 24(2020).

    [157] X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, X. Xu. Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber. J. Lightwave Technol., 36, 5130(2018).

    [158] G. Hu, L. Yang, Z. Yang, Y. Wang, X. Jin, J. Dai, Q. Wu, S. Liu, X. Zhu, X. Wang, T. Wu, R. C. T. Howe, T. Albrow-Owen, L. W. T. Ng, Q. Yang, L. G. Occhipinti, R. I. Woodward, E. J. R. Kelleher, Z. Sun, X. Huang, M. Zhang, C. D. Bain, T. Hasan. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Sci. Adv., 6, eaba5029(2020).

    [159] Y. Gao, W. Shi, W. Wang, Y. Leng, Y. Zhao. Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind. Eng. Chem. Res., 53, 16777(2014).

    [160] Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. Lee, Y. Gogotsi, Y. M. Jhon. 2D materials: metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv Mater., 29, 1702496(2017).

    [161] G. Hu, T. A. Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T.-C. Wu, H. Jussila, J.-B. Wu, P. Peng, P.-H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, T. Hasan. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun., 8, 1(2017).

    [162] X. Jin, G. Hu, M. Zhang, Y. Hu, T. A. Owen, R. C. T. Howe, T.-C. Wu, Q. Wu, Z. Zheng, T. Hasan. 102 fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser. Opt. Express, 26, 12506(2018).

    [163] X. Jiang, W. Li, T. Hai, R. Yue, Z. Chen, C. Lao, Y. Ge, G. Xie, Q. Wen, H. Zhang. Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics. NPJ 2D Mater. Appl., 3, 34(2019).

    [164] J. Lee, H. Chung, J. Koo, G. Woo, J. H. Lee. A 3-D printed saturable absorber for femtosecond mode-locking of a fiber laser. Opt. Mater., 89, 382(2019).

    [165] G. Woo, J. Lee, J. H. Lee. A 1.9 µm femtosecond fiber laser using a 3D printed, all-fiberized graphene/polylactic-acid saturable absorber. Laser Phys. Lett, 16, 085101(2019).

    [166] K. Kieu, F. W. Wise. All-fiber normal-dispersion femtosecond laser. Opt. Express, 16, 11453(2008).

    [167] L. Hou, H. Guo, Y. Wang, J. Sun, Q. Lin, Y. Bai, J. Bai. Sub-200 femtosecond dispersion-managed soliton ytterbium-doped fiber laser based on carbon nanotubes saturable absorber. Opt. Express, 26, 9063(2018).

    [168] G. Sobon, A. Duzynska, M. Świniarski, J. Judek, J. Sotor, M. Zdrojek. CNT-based saturable absorbers with scalable modulation depth for thulium-doped fiber lasers operating at 1.9 µm. Sci. Rep., 7, 45491(2017).

    [169] Z. Sun, T. Hasan, F. Wang, A. G. Rozhin, I. H. White, A. C. Ferrari. Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes. Nano Res., 3, 404(2010).

    [170] A. Martinez, S. Yamashita. Multi-gigahertz repetition rate passively mode locked fiber lasers using carbon nanotubes. Opt. Express, 19, 6155(2011).

    [171] J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun, T. Hasan. 152 fs nanotube-mode-locked thulium-doped all-fiber laser. Sci. Rep., 6, 28885(2016).

    [172] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803(2010).

    [173] D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, A. C. Ferrari. Few-cycle pulses from a graphene mode-locked all-fiber laser. Appl. Phys. Lett., 106, 253101(2015).

    [174] D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett., 97, 203106(2010).

    [175] A. Martinez, S. Yamashita. 10 GHz fundamental mode fiber laser using a graphene saturable absorber. Appl. Phys. Lett., 101, 041118(2012).

    [176] Y. Zhang, J. Zhu, P. Li, X. Wang, H. Yu, K. Xiao, C. Li, G. Zhang. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber. Opt. Commun., 413, 236(2018).

    [177] H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, W.-C. Xu, C.-J. Zhao, H. Zhang. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,”. Opt. Lett., 39, 4591(2014).

    [178] K. Wu, X. Zhang, J. Wang, X. Li, J. Chen. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express, 23, 11453(2015).

    [179] L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, J. Si. Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber. IEEE J. Quantum. Electron., 23, 44(2017).

    [180] R. Khazaeinezhad, S. H. Kassani, H. Jeong, D.-I Yeom, K. Oh. Femtosecond soliton pulse generation using evanescent field interaction through tungsten disulfide (WS2) film. IEEE J. Lightwave Technol., 33, 3550(2015).

    [181] R. Khazaeinezhad, S. H. Kassani, H. Jeong, K. J. Park, B. Yoon Kim, D.-I. Yeom, K. Oh. Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nanosheets. IEEE Photon. Technol. Lett, 27, 1581(2015).

    [182] D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, J. Zhao. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep., 6, 23583(2016).

    [183] H. Ahmad, S. N. Aidit, N. A. Hassan, M. F. Ismail, Z. C. Tiu. Generation of mode-locked erbium-doped fiber laser using MoSe2 as saturable absorber. Opt. Lasers Eng., 55, 076115(2016).

    [184] D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, J. Zhao. Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber. IEEE J. Quantum Electron., 24, 1100406(2018).

    [185] K. Niu, R. Sun, Q. Chen, B. Man, H. Zhang. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photon. Res., 6, 72(2018).

    [186] D. Mao, B. Jiang, X. Gan, C. Ma, Y. Chen, C. Zhao, H. Zhang, J. Zheng, J. Zhao. Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers. Photon. Res., 3, A43(2015).

    [187] H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, S.-C. Wen. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express, 22, 6868(2014).

    [188] L. Jin, X. Ma, H. Zhang, H. Zhang, H. Chen, Y. Xu. 3 GHz passively harmonic mode-locked Er-doped fiber laser by evanescent field-based nano-sheets topological insulator. Opt. Express, 26, 31244(2018).

    [189] B. Guo, S.-H. Wang, Z.-X. Wu, Z.-X. Wang, D.-H. Wang, H. Huang, F. Zhang, Y.-Q. Ge, H. Zhang. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express, 26, 22750(2018).

    [190] J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. M. Abramski. Black phosphorus saturable absorber for ultrashort pulse generation. Appl. Phys. Lett., 107, 051108(2015).

    [191] Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, D. Fan. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater., 6, 1701166(2017).

    [192] P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, J. Hu. A practical topological insulator saturable absorber for mode-locked fiber laser. Sci. Rep., 5, 8690(2015).

    [193] P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen. A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film. Opt. Express, 23, 154(2015).

    [194] J. Boguslawski, G. Sobon, R. Zybala, J. Sotor. Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator. Opt. Lett., 40, 2786(2015).

    [195] J. Wang, J. Yin, T. He, P. Yan. Sb2Te3 mode-locked ultrafast fiber laser at 1.93 µm. Chin. Phys. B, 27, 084214(2018).

    [196] J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, S. Ruan. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber. Photon. Res., 6, 535(2018).

    [197] J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, S. Ruan. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser. Opt. Lett., 42, 5010(2017).

    [198] P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, T. Guo. Self-starting mode-locking by fiber-integrated WS2 saturable absorber mirror. IEEE J. Quantum Electron., 23, 33(2017).

    [199] H. Chen, J. Yin, J. Yang, X. Zhang, M. Liu, Z. Jiang, J. Wang, Z. Sun, T. Guo, W. Liu, P. Yan. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Opt. Lett., 42, 4279(2017).

    [200] W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, Z. Wei. 70-fs mode-locked erbium-doped fiber laser with topological insulator. Sci. Rep., 6, 19997(2016).

    [201] M. Kowalczyk, J. Bogusławski, R. Zybała, K. Mars, A. Mikuła, G. Soboń, J. Sotor. Sb2Te3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers. Opt. Mater. Express, 6, 2273(2016).

    [202] P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, J. Yang. α-In2Se3 wideband optical modulator for pulsed fiber lasers. Opt. Lett., 43, 4417(2018).

    [203] P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, G. Cao. Microfiber-based WS2-film saturable absorber for ultra-fast photonics. Opt. Mater. Express, 5, 479(2015).

    [204] W. Liu, Y.-N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L.-M. Liu, Z. Wei. Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials. Photon. Res., 6, 227(2018).

    [205] Y. Meng, C. Zhu, Y. Li, X. Yuan, F. Xiu, Y. Shi, Y. Xu, F. Wang. Three-dimensional Dirac semimetal thin-film absorber for broadband pulse generation in the near-infrared. Opt. Lett., 43, 1503(2018).

    [206] J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, G. Sobon. Sub-90 fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber. Opt. Express, 23, 27503(2015).

    [207] G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber. Opt. Express, 21, 12797(2013).

    [208] X. Wu, S. Yu, H. Yang, W. Li, X. Liu, L. Tong. Effective transfer of micron-size graphene to microfibers for photonic applications. Carbon, 96, 1114(2016).

    [209] H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, Y. Liu. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express, 22, 17341(2014).

    [210] P. Yan, H. Chen, J. Yin, Z. Xu, J. Li, Z. Jiang, W. Zhang, J. Wang, I. L. Li, Z. Sun, S. Ruan. Large-area tungsten disulfide for ultrafast photonics. Nanoscale, 9, 1871(2017).

    [211] R. Khazaeizhad, S. H. Kassani, H. Jeong, D. Yeom, K. Oh. Passively mode-locked fiber laser based on CVD WS2, JW2A.74(2015).

    [212] W. Liu, M. Liu, Y. O. Yang, H. Hou, M. Lei, Z. Wei. CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology, 29, 394002(2018).

    [213] W. Liu, M. Liu, J. Yin, H. Chen, W. Lu, S. Fang, H. Teng, M. Lei, P. Yan, Z. Wei. Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method. Nanoscale, 10, 7971(2018).

    [214] J. Wang, W. Lu, J. Li, H. Chen, Z. Jiang, J. Wang, W. Zhang, M. Zhang, I. L. Li, Z. Xu, W. Liu, P. Yan. Ultrafast thulium-doped fiber laser mode locked by monolayer WSe2. IEEE J. Quantum Electron., 24, 1100706(2018).

    [215] J. Yin, J. Li, H. Chen, J. Wang, P. Yan, M. Liu, W. Liu, W. Lu, Z. Xu, W. Zhang, J. Wang, Z. Sun, S. Ruan. Large-area highly crystalline WSe2 atomic layers for ultrafast pulsed lasers. Opt. Express, 25, 30020(2017).

    [216] J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, S. Ruan. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride. Opt. Lett., 43, 1998(2018).

    [217] K. Zhang, M. Feng, Y. Ren, F. Liu, X. Chen, J. Yang, X.-Q. Yan, F. Song, J. Tian. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber. Photon. Res., 6, 893(2018).

    [218] Q. Guo, J. Pan, Y. Liu, H. Si, Z. Lu, X. Han, J. Gao, Z. Zuo, H. Zhang, S. Jiang. Output energy enhancement in a mode-locked Er-doped fiber laser using CVD-Bi2Se3 as a saturable absorber. Opt. Express, 27, 24670(2019).

    [219] G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Graphene mode-locked fiber laser at 2.8 µm. IEEE Photon. Technol. Lett, 28, 7(2016).

    [220] K. Yin, T. Jiang, H. Yu, X. Zheng, X. Cheng, J. Hou. Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber(2015).

    [221] Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, L. Qian. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Opt. Lett., 41, 56(2015).

    [222] T. Hu, D. D. Hudson, S. D. Jackson. Stable, self-starting, passively mode-locked fiber ring laser of the 3 µm class. Opt. Lett., 39, 2133(2014).

    [223] Z. Qin, G. Xie, J. Ma, P. Yuan, L. Qian. 2.8 µm all-fiber Q-switched and mode-locked lasers with black phosphorus. Photon. Res., 6, 1074(2018).

    [224] Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, D. Shen. Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 µm wavelength. Opt. Express, 26, 8224(2018).

    [225] Z. Qin, G. Xie, H. Gu, T. Hai, P. Yuan, J. Ma, L. Qian. Mode-locked 2.8-µm fluoride fiber laser: from soliton to breathing pulse. Adv. Photon., 1, 065001(2019).

    [226] W. Du, H. Li, C. Lan, C. Li, J. Li, Z. Wang, Y. Liu. Graphene/WS2 heterostructure saturable absorbers for ultrashort pulse generation in L-band passively mode-locked fiber lasers. Opt. Express, 28, 11514(2020).

    [227] X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotech., 9, 682(2014).

    [228] Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, L. Cao. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett., 15, 486(2014).

    [229] K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016).

    [230] J. Wang, Z. Li, H. Chen, G. Deng, X. Niu. Recent advances in 2D lateral heterostructures. Nano-Micro Lett., 11, 48(2019).

    [231] W. J. Liu, M. L. Liu, B. Liu, R. G. Quhe, M. Lei, S. B. Fang, H. Teng, Z. Y. Wei. Nonlinear optical properties of MoS2-WS2 heterostructure in fiber lasers. Opt. Express, 27, 6689(2019).

    [232] Z. Wang, H. Mu, J. Yuan, C. Zhao, Q. Bao, H. Zhang. Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photon., 9, 832(2015).

    [233] Y. Wang, H. Mu, X. Li, J. Yuan, J. Chen, S. Xiao, Q. Bao, Y. Gao, J. He. Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength. Appl. Phys. Lett., 108, 221901(2016).

    [234] J. Wang, A. Coillet, O. Demichel, Z. Wang, D. Rego, A. Bouhelier, P. Grelu, B. Cluzel. Saturable plasmonic metasurfaces for laser mode locking. Light Sci. Appl., 9, 50(2020).

    [235] E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J-K Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, D.-I. Yeom. Active control of all-fibre graphene devices with electrical gating. Nat. Commun., 6, 6861(2015).

    [236] J. Bogusławski, Y. Wang, H. Xue, X. Yang, D. Mao, X. Gan, Z. Ren, J. Zhao, Q. Dai, G. Sobon, J. Sotor, Z. Sun. Graphene actively mode-locked lasers. Adv. Funct. Mater., 28, 1801539(2018).

    [237] K. Chen, X. Zhou, X. Cheng, R. Qiao, Y. Cheng, C. Liu, Y. Xie, W. Yu, F. Yao, Z. Sun, F. Wang, K. Liu, Z. Liu. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat. Photon., 13, 754(2019).

    [238] S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, R. Vallée. Femtosecond fiber lasers reach the mid-infrared. Optica, 2, 623(2015).

    [239] T. Hu, S. D. Jackson, D. D. Hudson. Ultrafast pulses from a mid-infrared fiber laser. Opt. Lett., 40, 4226(2015).

    [240] C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, S. Zhu. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nat. Commun., 8, 14111(2017).

    CLP Journals

    [1] Jincheng Wei, Peng Li, Linpeng Yu, Shuangchen Ruan, Keyi Li, Peiguang Yan, Jiachen Wang, Jinzhang Wang, Chunyu Guo, Wenjun Liu, Ping Hua, Qitao Lü. Mode-locked fiber laser of 3.5 µm using a single-walled carbon nanotube saturable absorber mirror[J]. Chinese Optics Letters, 2022, 20(1): 011404

    Data from CrossRef

    [1] Genglin Li, Wenhui Du, Shuo Sun, Qingming Lu, Zhixiang Chen, Hongliang Liu, Yandong Ma, Xiaoli Sun, Yuechen Jia, Feng Chen. 2D layered MSe2 (M = Hf, Ti and Zr) for compact lasers: nonlinear optical properties and GHz lasing. Nanophotonics, 0(2022).

    Mengyu Zhang, Hao Chen, Jinde Yin, Jintao Wang, Jinzhang Wang, Peiguang Yan. Recent development of saturable absorbers for ultrafast lasers [Invited][J]. Chinese Optics Letters, 2021, 19(8): 081405
    Download Citation