• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 2, 1650056 (2017)
Krista Kauppi1, Vesa Korhonen2, Hany Ferdinando3, Mika Kallio4, and Teemu Myllyla3、*
Author Affiliations
  • 1Department of Medical Technology, University of Oulu, Oulu, 90014, Finland
  • 2Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P. O. Box 50, Oulu, 90029 OYS, Finland
  • 3Health & Wellness Measurements Group, Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, 90014, Finland
  • 4Department of Clinical Neurophysiology, Medical Research Center, Oulu University Hospital, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P. O. Box 50, Oulu, 90029 OYS, Finland
  • show less
    DOI: 10.1142/s1793545816500565 Cite this Article
    Krista Kauppi, Vesa Korhonen, Hany Ferdinando, Mika Kallio, Teemu Myllyla. Combined surface electromyography, near-infrared spectroscopy and acceleration recordings of muscle contraction: The effect of motion[J]. Journal of Innovative Optical Health Sciences, 2017, 10(2): 1650056 Copy Citation Text show less
    References

    [1] D. Stegeman, J. Blok, H. Hermens, K. Roeleveld, “Surface EMG models: Properties and applications,” J. Electromyogr. Kinesiol. 10, 313–326 (2000).

    [2] E. Clancy, E. Morin, R. Merletti, “Sampling, noise-reduction and amplitude estimation issues in surface electromyography,” J. Electromyogr. Kinesiol. 12, 1–16.

    [3] J. Hogrel, “Clinical application of surface electromyography in neuromuscular disorders,” Neurophysiol. Clin. 35, 59–71 (2005).

    [4] S. Pullman, D. Goodin, A. Marquinez, S. Tabbal, M. Rubin, “Clinical utility of surface EMG,” Neurology 55, 171–177 (2000). Crossref,

    [5] R. Merletti, A. Holobar, D. Farina, “Analysis of motor units with high-density surface electromyography,” J. Electromyogr. Kinesiol. 18, 879–890 (2008).

    [6] C. De Luca, “The use of surfacce electromyography in biomechanics,” J. Appl. Biomech. 13, 135–163 (1997).

    [7] O. Sayli, A. Akin, H. Cotuk, “Correlation analysis between surface electromyography and continuous-wave near-infrared spectroscopy parameters during isometric exercise to volitional fatigue,” Turkish J. Electr. Eng. Comput. Sci. 22, 780–793 (2014).

    [8] M. Cavalcanti, T. Vieira, “Surface electromyography: Why, when and how to use it,” Rev. Andaluza Med. Dep. 4(1), 17–28 (2011).

    [9] R. Merletti, A. Rainoldi, D. Farina, “Surface electromyography for noninvasice characterization of muscle,” Exerc. Sport Sci. Rev. 29, 20–25 (2011). Crossref,

    [10] R Merletti, A. Botter, A Troiano, E Merlo, M Minetto, “Technology and instrumentation for detection and conditioning of the surface electromyographic signal: State of the art,” Clin. Biomech. 24, 122–134 (2009).

    [11] S. Roy, G. De Luca, M. Cheng, A. Johansson, L. Gilmore, C. De Luca, “Electro-mechanical stability of surface EMG sensors,” Med. Bio. Eng. Comput. 45, 447–457 (2007).

    [12] G. Elcadi, Near infrared spectroscopy for assessing oxygenation and hemodynamics in the upper extremities of healthy subject and patients with work-related muscle pain, Thesis, Department of Community Medicine and Rehabilitation, Rehabilitation medicine, Ume University (2012).

    [13] R. Boushel, C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Scand. J. Med. Sci. Sports 11 (4), 213–222 (2001).

    [14] B. M. Celie, J. Boone, J. Dumortier, W. Derave, T. De Backer, J. G. Bourgois, “Possible influences on the interpretation of functional domain (FD) near-infrared spectroscopy (NIRS): An explorative study,” Appl. Spectrosc. 70 (2), 363–371 (2016).

    [15] M. Cope, “The application of near infrared spectroscopy to noninvasive monitoring of cerebral oxygenation in the newborn infant,” Dep. Med. Phys. Bioeng. 342 (1991).

    [16] M. Cope, D. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput. 26 (3), 289–294 (1988).

    [17] M. Ferrari, M. Muthalib, V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: Recent developments,” Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci. 369 (1955), 4577–4590 (2011).

    [18] B. R. Scott, K. M. Slattery, D. V. Sculley, R. G. Lockie, B. J. Dascombe, “Reliability of telemetric electromyography and near-infrared spectroscopy during high-intensity resistance exercise,” J. Electromyogr. Kinesiol. 24 (5), 722–730 (2014).

    [19] F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. C. Filligoi, M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” J. Electromyogr. Kinesiol. 19 (2), e1–e11 (2009).

    [20] Y. N. Bhambhani, “Muscle oxygenation trends during dynamic exercise measured by near infrared spectroscopy,” Can. J. Appl. Physiol. 29 (4), 504–523 (2004). Crossref,

    [21] P. Yao, W. Guo, X. Sheng, D. Zhang, X. Zhu, A portable multi-channel wireless NIRS device for muscle activity real-time monitoring. In engineering in medicine and biology society (EMBC), 2014 IEEE 36th Ann. Int. Conf., pp. 3719–3722.

    [22] Y. Bhambhani, J. L. Fan, N. Place, J. Rodriguez-Falces, B. Kayser, “Electromyographic, cerebral, and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities,” Front. Physiol. 5(190), (2014).

    [23] T. E. Cayot, J. D. Lauver, C. R. Silette, B. W. Scheuermann, “Effects of blood flow restriction duration on muscle activation and microvascular oxygenation during low-volume isometric exercise,” Clin. Physiol. Funct. Imag. 01 7 (2015), doi: 10.1111/cpf.12228.

    [24] C. Booghs, S. Baudry, R. Enoka, J. Duchateau, “Influence of neural adjustments and muscle oxygenation on task failure during sustained isometric contractions with elbow flexor muscles,” Exp. Physiol. 97 (8), 918–929 (2012).

    [25] G. H. Elcadi, M. Forsman, U. Aasa, M. Fahlstrom, A. G. Crenshaw, “Shoulder and forearm oxygenation and myoelectric activity in patients with work-related muscle pain and healthy subjects,” Eur. J. Appl. Physiol. 113 (5), 1103–1115 (2013).

    [26] S. A. Ferguson, W. G. Allread, P. Le, J. Rose, W. S. Marras, “Shoulder muscle fatigue during repetitive tasks as measured by electromyography and near-infrared spectroscopy,” Hum. Factors 55 (6), 1077–1087 (2013).

    [27] W. Moalla, A. Merzouk, F. Costes, Z. Tabka, S. Ahmaidi, “Muscle oxygenation and EMG activity during isometric exercise in children,” J. Sport. Sci. 24 (11), 1195–1201 (2006).

    [28] E. Horikoshi, H. Ishikawa, T. Yoshida, S. Tamaoki, T. S. Kajii, “Oxygen saturation and electromyographic changes in masseter muscle during experimental chewing of gum with harder texture,” Acta Odontol. Scand. 71 (6), 1378–1385 (2013).

    [29] W. J. Albert, G. G. Sleivert, J. P. Neary, Y. N. Bhambhani, “Monitoring individual erector spinae fatigue responses using electromyography and near infrared spectroscopy,” Can. J. Appl. Physiol. 29 (4), 363–378 (2004). Crossref,

    [30] R. T. Kell, Y. Bhambhani, “Relationship between erector spinae muscle oxygenation via in vivo near infrared spectroscopy and static endurance time in healthy males,” Eur. J. Appl. Physiol. 102 (2), 243–250 (2008).

    [31] D. A. Boas, A. M. Dale, Franceschini, “Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage, 23, S275–S288 (2004).

    [32] V. O. Korhonen, T. S. Myllyla, M. Y. Kirillin, A. P. Popov, A. V. Bykov, A. V. Gorshkov,, V. Kiviniemi, “Light propagation in NIR spectroscopy of the human brain,” IEEE J. Sel. Top. Quantum Electron. 20 (2), 289–298 (2014).

    [33] G. Drost, D. Stageman, B. Engelen, M. Zwarts, “Clinical applications of high-density surface EMG: A systematic review,” J. Lectromyogr. Kinesiol. 16, 586–560 (2006).

    [34] W. Guo, X. Sheng, H. Liu, X. Zhu, “Development of a multi-channel compact-size wireless hybrid sEMG/NIRS sensor system for prosthetic manipulation,” IEEE Sensor 16 (2), 447–456 (2016).

    [35] H. S. S. Sorvoja, T. S. Myllyl , M. Y. Kirillin, E. A. Sergeeva, R. A. Myllyl , A. A. Elseoud, V. Kiviniemi, “Non-invasive, MRI-compatible fibreoptic device for functional near-IR reflectometry of human brain,” Quantum Electron. 40 (12), 1067 (2010). ISI,

    [36] S. Fantini, M. A. Franceschini, E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: A frequency-domain study in the diffusion approximation,” JOSA B 11 (10), 2128–2138 (1994).

    [37] T. J. Huppert, S. G. Diamond, M. A. Franceschini, D. A. Boas, “HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48 (10), D280–D298 (2009).

    [38] P. Van der Zee, M. Cope, S. Arridge, M. Essenpreis, L. Potter, A. Edwards, J. Wyatt, D. McCormick, S. Roth, E. Reynolds, Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing, Oxygen Transport to Tissue XIII, pp. 143–153, Springer (1992).

    [39] A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295 (1995).

    [40] F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. Filligoi, M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” Kinesiology 19 (2), 1–11 (2009).

    [41] B. Molavi, G. Dumont, B. Shadgan, Motion artifact removal from muscle NIR Spectroscopy measurements, 23rd Canadian Conf. Electrical and Computer Engineering (CCECE), Calgary, pp. 1–4, (2010).

    [42] M. Praagman, H. Veeger, E. Chadwick, W. Colier, F. can der Helm, “Muscle oxygen consumption, determined by NIRS, in relation to external force and EMG,” J. Biomech. 36, 905–912 (2003).

    [43] H. Miura, H. Araki, H. Matoba, K. Kitagawa, “Relationship among oxygenation, myoelectric activity, and lactic acid accumulation in vastus lateralis muscle during exercise with constant work rate,” Int. J. Sports Med. 21 (3), 180–184 (2000).

    [44] J. Taelman, J. Vanderhaegen, M. Robjins, G. Naulaers, A. Spaepen, S. Van Huffel, “Estimation of muscle fatigue using surface electromyography and near-infrared spectsocopy,” Adv. Exp. Med. Biol. 701, 353–359 (2011).

    [45] J. Cheng, X. Chen, A. Liu, H. Peng, “A novel phonology- and radical-coded Chinese sign language recognition framework using accelerometer and surface electromyography sensors,” Sensors (Switzerland) 15, 23303–23324 (2015). Crossref,

    [46] H. Dong, I. Ugalde, N. Figueroa, S. Abdulmotaleb, “Towards whole body fatigue assessment of human movement: A fatigue tracking system based on combined sEMG and accelerometer signals,” Sensors 14, 2052–2070 (2014).

    [47] A. Meigal, S. Rissanen, M. Tarvainen, O. Airaksinen, M. Kankaanp , P. Karjalainen, “Non-linear EMG parameter for differential and early diagnostics of parkinson’s disease,” Front. Neurol. 4, article 135 (2013).

    [48] S. Roy, M. Cheng, S. Chang, J. Moore, G. De Luca, S. Nawab, C. De Luca, “A combined sEMG and accelerometer system for monitoring functional activity in stroke,” IEEE Trans. Neural Syst. Rehabil. Eng. 17, 585–594 (2014).

    [49] M. J. Zwarts, M. Keidel, “Relationship between electrical and vibratory output of muscle during voluntary contraction and fatigue,” Muscle Nerve 14 (8), 756–761 (1991).

    [50] C. Luca, L. Gilmore, M. Kuznetsov, S. Roy, “Filtering the surface EMG signal: Movement artefact and baseline noise contamination,” J. Biomechan. 43, 1583–1579 (2010). ISI,

    [51] M. Raez, M. Hussain, F. Mohd-Yasin, “Techniques of EMG signal analysis: Detection, processing, classification and applications,” Biol. Proced. Online 8, 11–35 (2006).

    [52] J. Virtanen, T. Noponen, K. Kotilahti, J. Virtanen, R. Ilmoniemi, “Accelerometer-based method for correcting signal baseline changes caused by motion artifacts in medical near-infrared spectroscopy,” J. Biomed. Opt. 16 (8), 087005-1–087005-9 (2011).

    [53] Patent: http://www.google.ch/patents/US20150165269.

    Krista Kauppi, Vesa Korhonen, Hany Ferdinando, Mika Kallio, Teemu Myllyla. Combined surface electromyography, near-infrared spectroscopy and acceleration recordings of muscle contraction: The effect of motion[J]. Journal of Innovative Optical Health Sciences, 2017, 10(2): 1650056
    Download Citation