• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823009 (2021)
Honghua Fang*, Xiaoze Li, Yunke Zhou, and Hongbo Sun**
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/AOS202141.0823009 Cite this Article Set citation alerts
    Honghua Fang, Xiaoze Li, Yunke Zhou, Hongbo Sun. Ultrafast Spectroscopy of Hot Carriers in Perovskites[J]. Acta Optica Sinica, 2021, 41(8): 0823009 Copy Citation Text show less
    References

    [1] Eperon G E, Leijtens T, Bush K A et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps[J]. Science, 354, 861-865(2016).

    [2] Dou L, Yang Y M, You J et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 5, 5404(2014).

    [3] Luo J J, Wang X M, Li S R et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 563, 541-545(2018).

    [4] Yang X H, Wang Q, Xiao Z W et al. Highly efficient green-emitting devices based on mixed-cation perovskites[J]. Acta Optica Sinica, 39, 1016002(2019).

    [5] Adjokatse S, Fang H H, Duim H et al. Scalable fabrication of high-quality crystalline and stable FAPbI3 thin films by combining doctor-blade coating and the cation exchange reaction[J]. Nanoscale, 11, 5989-5997(2019).

    [6] Shi D, Adinolfi V, Comin R et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 347, 519-522(2015).

    [7] Fang H H, Protesescu L, Balazs D M et al. Exciton recombination in formamidinium lead triiodide: nanocrystals versus thin films[J]. Small, 13, 1700673(2017).

    [9] Al-Ashouri A, Köhnen E, Li B et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction[J]. Science, 370, 1300-1309(2020).

    [10] Conibeer G, Ekins-Daukes N, Guillemoles J F et al. Progress on hot carrier cells[J]. Solar Energy Materials and Solar Cells, 93, 713-719(2009).

    [11] Kahmann S, Loi M A. Hot carrier solar cells and the potential of perovskites for breaking the Shockley-Queisser limit[J]. Journal of Materials Chemistry C, 7, 2471-2486(2019).

    [12] Li M, Fu J, Xu Q et al. Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells[J]. Advanced Materials, 31, 1802486(2019).

    [13] Lyon S A. Spectroscopy of hot carriers in semiconductors[J]. Journal of Luminescence, 35, 121(1986).

    [14] le Bris A, Guillemoles J F. Hot carrier solar cells: achievable efficiency accounting for heat losses in the absorber and through contacts[J]. Applied Physics Letters, 97, 113506(2010).

    [15] Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters[J]. Journal of Applied Physics, 53, 3813-3818(1982).

    [16] Hopper T R, Gorodetsky A, Frost J M et al. Ultrafast intraband spectroscopy of hot-carrier cooling in lead-halide perovskites[J]. ACS Energy Letters, 3, 2199-2205(2018).

    [17] Tedeschi D, de Luca M, Fonseka H A et al. Long-lived hot carriers in III-V nanowires[J]. Nano Letters, 16, 3085-3093(2016).

    [18] Ryan J F, Taylor R A, Turberfield A J et al. Time-resolved photoluminescence of two-dimensional hot carriers in GaAs-AlGaAs heterostructures[J]. Physical Review Letters, 53, 1841(1984).

    [19] Rosenwaks Y, Hanna M C, Levi D H et al. Hot-carrier cooling in GaAs: quantum wells versus bulk[J]. Physical Review B, 48, 14675-14678(1993).

    [20] Yang Y, Ostrowski D P, France R M et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites[J]. Nature Photonics, 10, 53-59(2016).

    [21] Papagiorgis P, Manoli A, Michael S et al. Unraveling the radiative pathways of hot carriers upon intense photoexcitation of lead halide perovskite nanocrystals[J]. ACS Nano, 13, 5799-5809(2019).

    [22] Kawai H, Giorgi G, Marini A et al. The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction[J]. Nano Letters, 15, 3103-3108(2015).

    [23] Polman A, Knight M, Garnett E C, future challenges[J]. Science et al. 352(6283): aad4424(2016).

    [24] Paul K K, Kim J H, Lee Y H. Hot carrier photovoltaics in van der Waals heterostructures[J]. Nature Reviews Physics, 3, 178-192(2021).

    [25] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 32, 510-519(1961).

    [26] König D, Casalenuovo K, Takeda Y et al. Hot carrier solar cells: principles, materials and design[J]. Physica E: Low-Dimensional Systems and Nanostructures, 42, 2862-2866(2010).

    [27] Nozik A J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots[J]. Annual Review of Physical Chemistry, 52, 193-231(2001).

    [28] Jang D J, Olesberg J T, Flatté M E et al. Hot carrier dynamics in a (GaInSb/InAs)/GaInAlAsSb superlattice multiple quantum well measured with mid-wave infrared, subpicosecond photoluminescence upconversion[J]. Applied Physics Letters, 70, 1125-1127(1997).

    [29] Zhang Y, Jia X, Liu S et al. A review on thermalization mechanisms and prospect absorber materials for the hot carrier solar cells[J]. Solar Energy Materials and Solar Cells, 225, 111073(2021).

    [30] Takeda Y, Ito T, Motohiro T et al. Hot carrier solar cells operating under practical conditions[J]. Journal of Applied Physics, 105, 074905(2009).

    [31] Fang H-H, Raissa R, Abdu-Aguye M et al. Photophysics of organic-inorganic hybrid lead iodide perovskite single crystals[J]. Advanced Functional Materials, 25, 2378(2015).

    [32] Monahan D M, Guo L, Lin J et al. Room-temperature coherent optical phonon in 2D electronic spectra of CH3NH3PbI3 perovskite as a possible cooling bottleneck[J]. The Journal of Physical Chemistry Letters, 8, 3211-3215(2017).

    [33] Xing G, Mathews N, Sun S et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 342, 344-347(2013).

    [34] Chen K, Barker A J. Morgan F L C, et al. Effect of carrier thermalization dynamics on light emission and amplification in organometal halide perovskites[J]. The Journal of Physical Chemistry Letters, 6, 153-158(2015).

    [35] Price M B, Butkus J, Jellicoe T C et al. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites[J]. Nature Communications, 6, 8420(2015).

    [36] Righetto M, Lim S S, Giovanni D et al. Hot carriers perspective on the nature of traps in perovskites[J]. Nature Communications, 11, 2712(2020).

    [37] Zhu H, Miyata K, Fu Y et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites[J]. Science, 353, 1409-1413(2016).

    [38] Fang H H, Adjokatse S, Shao S Y et al. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites[J]. Nature Communications, 9, 1-8(2018).

    [39] Guo Z, Wan Y, Yang M et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy[J]. Science, 356, 59-62(2017).

    [40] Zhou L, Liao J F, Huang Z G et al. Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal[J]. Angewandte Chemie International Edition, 58, 15435-15440(2019).

    [41] Yamamoto Y, Oohata G, Mizoguchi K et al. Photoluminescence of excitons and biexcitons in (C4H9NH3)2PbBr4 crystals under high excitation density[J]. Physica Status Solidi (c), 9, 2501-2504(2012).

    [42] Fang H H, Yang J, Tao S X et al. Unravelling light-induced degradation of layered perovskite crystals and design of efficient encapsulation for improved photostability[J]. Advanced Functional Materials, 28, 1800305(2018).

    [43] Pathak S, Sakai N. Rivarola F W R, et al. Perovskite crystals for tunable white light emission[J]. Chemistry of Materials, 27, 8066-8075(2015).

    [44] Sun Q, Zu S, Kosei U et al. Applications of ultrafast photoemission electron microscopy in nanophotonics[J]. Chinese Journal of Lasers, 46, 0508001(2019).

    [45] Xiao Y, Bai Y, Liu P. Single-shot time-domain spectrum detection for terahertz radiation[J]. Chinese Journal of Lasers, 46, 0614009(2019).

    [46] Sekiguchi F, Hirori H, Yumoto G et al. Enhancing the hot-phonon bottleneck effect in a metal halide perovskite by terahertz phonon excitation[J]. Physical Review Letters, 126, 077401(2021).

    [47] Richter J M. Branchi F, de Almeida Camargo F V, et al. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy[J]. Nature Communications, 8, 376(2017).

    [48] Nah S, Spokoyny B M. Soe C M M, et al. Ultrafast imaging of carrier cooling in metal halide perovskite thin films[J]. Nano Letters, 18, 1044-1048(2018).

    [49] Conibeer G J, König D, Green M A et al. Slowing of carrier cooling in hot carrier solar cells[J]. Thin Solid Films, 516, 6948-6953(2008).

    [50] Yang J F, Wen X M, Xia H Z et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites[J]. Nature Communications, 8, 14120(2017).

    [51] Fu J, Xu Q, Han G et al. Hot carrier cooling mechanisms in halide perovskites[J]. Nature Communications, 8, 1300(2017).

    [52] Achermann M, Bartko A P, Hollingsworth J A et al. The effect of auger heating on intraband carrier relaxation in semiconductor quantum rods[J]. Nature Physics, 2, 557-561(2006).

    [53] Miyata K, Meggiolaro D, Trinh M T et al. Large polarons in lead halide perovskites[J]. Science Advances, 3, e1701217(2017).

    [54] Selig O, Sadhanala A, Müller C et al. Organic cation rotation and immobilization in pure and mixed methylammonium lead-halide perovskites[J]. Journal of the American Chemical Society, 139, 4068-4074(2017).

    [55] Guzelturk B. Winkler T, van de Goor T W J, et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites[J]. Nature Materials, 1-6(2021).

    [56] Thouin F. Kandada A R S, Valverde-Chávez D A, et al. Electron-phonon couplings inherent in polarons drive exciton dynamics in two-dimensional metal-halide perovskites[J]. Chemistry of Materials, 31, 7085-7091(2019).

    [57] Ghosh D, Welch E, Neukirch A J et al. Polarons in halide perovskites: a perspective[J]. The Journal of Physical Chemistry Letters, 11, 3271-3286(2020).

    [58] Manser J S, Kamat P V. Band filling with free charge carriers in organometal halide perovskites[J]. Nature Photonics, 8, 737-743(2014).

    [59] Wang L F, Chen Z W, Liang G J et al. Observation of a phonon bottleneck in copper-doped colloidal quantum dots[J]. Nature Communications, 10, 4532(2019).

    [60] Singh R, Liu W Y, Lim J et al. Hot-electron dynamics in quantum dots manipulated by spin-exchange auger interactions[J]. Nature Nanotechnology, 14, 1035-1041(2019).

    [61] Singhal P, Ghosh H N. Hot charge carrier extraction from semiconductor quantum dots[J]. The Journal of Physical Chemistry C, 122, 17586-17600(2018).

    [62] Hopper T R, Gorodetsky A, Jeong A et al. Hot carrier dynamics in perovskite nanocrystal solids: role of the cold carriers, nanoconfinement, and the surface[J]. Nano Letters, 20, 2271-2278(2020).

    [63] Yu B Y, Chen L, Qu Z K et al. Size-dependent hot carrier dynamics in perovskite nanocrystals revealed by two-dimensional electronic spectroscopy[J]. The Journal of Physical Chemistry Letters, 12, 238-244(2021).

    [64] Li M, Begum R, Fu J et al. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals[J]. Nature Communications, 9, 4197(2018).

    [65] Wang T, Jin L R, Hidalgo J et al. 6(43): eabb1336(2020).

    [66] Lim S S, Giovanni D, Zhang Q et al. 5(11): eaax3620(2019).

    [67] Li M, Bhaumik S, Goh T W et al. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals[J]. Nature Communications, 8, 14350(2017).

    [68] Hong H, Zhang J C, Zhang J et al. Ultrafast broadband charge collection from clean graphene/CH3NH3PbI3 interface[J]. Journal of the American Chemical Society, 140, 14952-14957(2018).

    [69] Jiménez-López J. Puscher B M D, Guldi D M, et al. Improved carrier collection and hot electron extraction across perovskite, C60, and TiO2 interfaces[J]. Journal of the American Chemical Society, 142, 1236-1246(2020).

    [70] Wang G, Liao L P, Elseman A M et al. An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite[J]. Nano Energy, 68, 104383(2020).

    Honghua Fang, Xiaoze Li, Yunke Zhou, Hongbo Sun. Ultrafast Spectroscopy of Hot Carriers in Perovskites[J]. Acta Optica Sinica, 2021, 41(8): 0823009
    Download Citation