• Journal of Innovative Optical Health Sciences
  • Vol. 12, Issue 5, 1930009 (2019)
Hui Li1, Jia Yu1, Rongli Zhang1,2, Xi Li3, and Wei Zheng1,*
Author Affiliations
  • 1Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
  • 2Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510000, P. R. China
  • 3Department of Gastroenterology, Peking University Shenzhen Hospital, Shen Zhen, Guangdong 518036, P. R. China
  • show less
    DOI: 10.1142/s179354581930009x Cite this Article
    Hui Li, Jia Yu, Rongli Zhang, Xi Li, Wei Zheng. Two-photon excitation fluorescence lifetime imaging microscopy: A promising diagnostic tool for digestive tract tumors[J]. Journal of Innovative Optical Health Sciences, 2019, 12(5): 1930009 Copy Citation Text show less
    References

    [1] W. Chen, R. Zheng, P. D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X. Q. Yu, J. He, “Cancer statistics in China, 2015," CA-Cancer J. Clin. 66, 115–132 (2016).

    [2] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CACancer J. Clin. 68, 394–424 (2018).

    [3] J. Yan, G. Chen, J. Chen, N. Liu, S. Zhuo, H. Yu, M. Ying, “A pilot study of using multiphoton microscopy to diagnose gastric cancer," Surg. Endosc. 25, 1425–1430 (2011).

    [4] Z. Wang, W. Zheng, J. Lin, Z. Huang, “Simultaneous quadruple-modal nonlinear optical imaging for gastric diseases diagnosis and characterization," Conf. Multiphoton Microscopy in the Biomedical Sciences XV, SPIE, Vol. 9329, p. 93291P (2015).

    [5] W. Denk, J. H. Strickler, W. W. Webb, “Twophoton laser scanning fluorescence microscopy," Science 248, 73–76 (1990).

    [6] F. Helmchen, W. Denk, “Deep tissue two-photon microscopy," Nat. Methods 2, 932–940 (2005).

    [7] M. J. Pittet, R. Weissleder, “Intravital imaging," Cell 147, 983–991 (2011).

    [8] W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, “Live tissue intrinsic emission microscopy using multiphotonexcited native fluorescence and second harmonic generation," Proc. Natl Acad. Sci. USA 100, 7075–7080 (2003).

    [9] B. G. Wang, K. Konig, K. J. Halbhuber, “Twophoton microscopy of deep intravital tissues and its merits in clinical research," J. Microsc. 238, 1–20 (2010).

    [10] L. Marcu, “Fluorescence lifetime techniques in medical applications," Ann. Biomed. Eng. 40, 304–331 (2012).

    [11] M. Y. Berezin, S. Achilefu, “Fluorescence lifetime measurements and biological imaging," Chem. Rev. 110, 2641–2684 (2010).

    [12] D. Chorvat, A. Chorvatova, “Multi-wavelength fluorescence lifetime spectroscopy: A new approach to the study of endogenous fluorescence in living cells and tissues," Laser Phys. Lett. 6, 175–193 (2009).

    [13] L. K. Seah, P. Wang, V. M. Murukeshan, Z. X. Chao, “Application of fluorescence lifetime imaging (FLIM) in latent finger mark detection," Forensic Sci. Int. 160, 109–114 (2006).

    [14] W. Becker, A. Bergmann, Handbook of Biomedical Nonlinear Optical Microscopy, Oxford University Press, Oxford (2008).

    [15] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition, Springer, New York (2006).

    [16] K. Konig, “Clinical multiphoton tomography," J. Biophoton. 1, 13–23 (2008).

    [17] S. Fan, X. Peng, L. Liu, S. Liu, Y. Lu, J. Qu, “Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging," Conf. Multiphoton Microscopy in the Biomedical Sciences XIV, SPIE, Vol. 8948, p. 89482E (2014).

    [18] W. Pan, J. Qu, T. Chen, L. Sun, and J. Qi, “FLIM and emission spectral analysis of caspase-3 activation inside single living cell during anticancer drug-induced cell death," Eur. Biophys. J. 38, 447–456 (2009).

    [19] S. R. Kantelhardt, J. Leppert, J. Krajewski, N. Petkus, E. Reusche, V. M. Tronnier, G. Huttmann, and A. Giese, “Imaging of brain and brain tumor specimens by time-resolved multiphoton excitation microscopy ex vivo," Neuro. Oncol. 9, 103–112 (2007).

    [20] M. C. Skala, K.M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia," Proc. Natl Acad. Sci. USA 104, 19494–19499 (2007).

    [21] S. R. Kantelhardt, D. Kalasauskas, K. Konig, E. Kim, M. Weinigel, A. Uchugonova, A. Giese, “In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue," J. Neurooncol. 127, 473–482 (2016).

    [22] M. N. Pastore, H. Studier, C. S. Bonder, M. S. Roberts, “Non-invasive metabolic imaging of melanoma progression," Exp. Dermatol. 26, 607–614 (2017).

    [23] A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging," Theranostics 5, 919–930 (2015).

    [24] R. Niesner, K.-H. Gericke, “Fluorescence lifetime imaging in biosciences: Technologies and applications," Front. Phys. China 3, 88–104 (2008).

    [25] W. Becker, Advanced Time-Correlated Single-Photon Counting Techniques, Springer, Berlin, Heidelberg, New York (2005).

    [26] W. H. Koppenol, P. L. Bounds, C. V. Dang, “Otto Warburg's contributions to current concepts of cancer metabolism," Nat. Rev. Cancer 11, 325–337 (2011).

    [27] Y. Wu, W. Zheng, J. Y. Qu, “Sensing cell metabolism by time-resolved autofluorescence," Opt. Lett. 31, 3122–3124 (2006).

    [28] D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH," Cancer Res. 65, 8766–8773 (2005).

    [29] B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals," J. Biol. Chem. 254, 4764–4771 (1979).

    [30] B. Chance, P. Cohen, F. Jobsis, B. Schoener, “Intracellular oxidation-reduction states in vivo," Science 137, 499–508 (1962).

    [31] T. Galeotti, G. D. V. van Rossum, D. H. Mayer, B. Chance, “On the fluorescence of NAD(P)H in whole-cell preparations of tumours and normal tissues," Eur. J. Biochem. 17, 485–496 (1970).

    [32] J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH," Proc. Natl Acad. Sci. USA 89, 1271–1275 (1992).

    [33] M. J. Colditz, K. Leyen, R. L. Jeffree, “Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: theoretical, biochemical and practical aspects," J. Clin. Neurosci. 19, 1611–1616 (2012).

    [34] J. Leppert, J. Krajewski, S. R. Kantelhardt, S. Schlaffer, N. Petkus, E. Reusche, G. Huttmann, A. Giese, “Multiphoton excitation of auto-fluorescence for microscopy of glioma tissue," Neurosurgery 58, 759–767 (2006).

    [35] P. P. Provenzano, C. T. Rueden, S. M. Trier, L. Yan, S. M. Ponik, D. R. Inman, P. J. Keely, K. W. Eliceiri, “Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and exogenous fluorophores in breast cancer," J. Biomed. Opt. 13, 031220 (2008).

    [36] J. A. Russell, K. R. Diamond, T. J. Collins, H. F. Tiedje, J. E. Hayward, T. J. Farrell, M. S. Patterson, Q. Fang, “Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single-and two-photon excitation," IEEE J. Sel. Top. Quantum 14, 158–166 (2008).

    [37] S. R. Kantelhardt, H. Diddens, J. Leppert, V. Rohde, G. Huttmann, A. Giese, “Multiphoton excitation fluorescence microscopy of 5-aminolevulinic acid induced fluorescence in experimental gliomas," Lasers Surg. Med. 40, 273–281 (2008).

    [38] S. X. Zhang, An Atlas of Histology, Springer-Verlag, New York (1999).

    [39] A. Ruck, C. Hauser, S. Mosch, S. Kalinina, “Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells," J. Biomed. Opt. 19, 96005 (2014).

    [40] M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia," J. Biomed. Opt. 12, 024014 (2007).

    [41] S. K. Teh, W. Zheng, S. Li, D. Li, Y. Zeng, Y. Yang, J. Y. Qu, “Multimodal nonlinear optical microscopy improves the accuracy of early diagnosis of squamous intraepithelial neoplasia," J. Biomed. Opt. 18, 036001 (2013).

    [42] Y. F. Shen, M. R. Tsai, S. C. Chen, Y. S. Leung, C. T. Hsieh, Y. S. Chen, F. L. Huang, R. P. Obena, M. M. Zulueta, H. Y. Huang, W. J. Lee, K. C. Tang, C. T. Kung, M. H. Chen, D. B. Shieh, Y. J. Chen, T. M. Liu, P. T. Chou, C. K. Sun, “Imaging endogenous bilirubins with two-photon fluorescence of bilirubin dimers," Anal. Chem. 87, 7575–7582 (2015).

    [43] P. H. Lakner, M. G. Monaghan, Y. Moller, M. A. Olayioye, K. Schenke-Layland, “Applying phasor approach analysis of multiphoton FLIM measurements to probe the metabolic activity of three-dimensional in vitro cell culture models," Sci. Rep. 7, 42730 (2017).

    [44] J. Adur, V. B. Pelegati, M. Bianchi, A. A. de Thomaz, M. O. Baratti, H. F. Carvalho, V. H. Casco, C. L. Cesar, “Multimodal nonlinear optical microscopy used to discriminate human colon cancer," Conf. Multiphoton Microscopy in the Biomedical Sciences XIII, SPIE, Vol. 8588, p. 85881J (2013).

    [45] H. Bao, A. Boussioutas, J. Reynolds, S. Russell, M. Gu, “Imaging of goblet cells as a marker for intestinal metaplasia of the stomach by one-photon and two-photon fluorescence endomicroscopy," J. Biomed. Opt. 14, 064031 (2009).

    [46] J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo," Clin. Gastroenterol Hepatol. 6, 95–101 (2008).

    [47] R. Cicchi, A. Sturiale, G. Nesi, D. Kapsokalyvas, G. Alemanno, F. Tonelli, F. S. Pavone, “Multiphoton morpho-functional imaging of healthy colon mucosa, adenomatous polyp and adenocarcinoma," Biomed. Opt. Expr. 4, 1204–1213 (2013).

    [48] L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, E. M. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral twophoton microscopy," PLoS One 6, e19925 (2011).

    [49] X. Li, H. Li, X. Z. He, T. G. Chen, X. Y. Xia, C. X. Yang, W. Zheng, “Spectrum- and time-resolved endogenous multiphoton signals reveal quantitative differentiation of premalignant and malignant gastric mucosa," Biomed. Opt. Expr. 9, 453–471 (2018).

    [50] W. Zheng, Y. C. Wu, D. Li, J. N. Y. Qu, “Autofluorescence of epithelial tissue: Single-photon versus two-photon excitation," J. Biomed. Opt. 13, 8 (2008).

    [51] R. Patalay, C. Talbot, Y. Alexandrov, I. Munro, M. A. A. Neil, K. Koenig, P. M. W. French, A. Chu, G. W. Stamp, C. Dunsby, “Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels," Biomed. Opt. Expr. 2, 3295–3308 (2011).

    [52] M. S. Roberts, Y. Dancik, T. W. Prow, C. A. Thorling, L. L. Lin, J. E. Grice, T. A. Robertson, K. Konig, W. Becker, “Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy," Eur. J. Pharm. Biopharm. 77, 469–488 (2011).

    [53] R. Datta, C. Heylman, S. C. George, E. Gratton, “Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cellderived cardiomyocytes," Biomed. Opt. Expr. 7, 1690–1701 (2016).

    Hui Li, Jia Yu, Rongli Zhang, Xi Li, Wei Zheng. Two-photon excitation fluorescence lifetime imaging microscopy: A promising diagnostic tool for digestive tract tumors[J]. Journal of Innovative Optical Health Sciences, 2019, 12(5): 1930009
    Download Citation