• Acta Optica Sinica
  • Vol. 39, Issue 10, 1005002 (2019)
Huifang Dai1、2、3, Peng Chen1、2、3, Jingyin Zhao1、2、3, Yong Sun1、2、3, Jiao Xu1、2、3, Fanyu Kong1、3, and Yunxia Jin1、3、*
Author Affiliations
  • 1Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/AOS201939.1005002 Cite this Article Set citation alerts
    Huifang Dai, Peng Chen, Jingyin Zhao, Yong Sun, Jiao Xu, Fanyu Kong, Yunxia Jin. Impulse Response Characteristics of Chirped Volume Bragg Gratings[J]. Acta Optica Sinica, 2019, 39(10): 1005002 Copy Citation Text show less
    References

    [1] Huang H, Yang L M, Liu J. Micro-hole drilling and cutting using femtosecond fiber laser[J]. Optical Engineering, 53, 051513(2014). http://www.tandfonline.com/servlet/linkout?suffix=CIT0004&dbid=16&doi=10.1080%2F10420150.2018.1428976&key=10.1117%2F1.OE.53.5.051513

    [2] Röser F, Eidam T, Rothhardt J et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 32, 3495-3497(2007). http://europepmc.org/abstract/MED/18087520

    [3] Klenke A, Hädrich S, Eidam T et al. 22 GW peak-power fiber chirped-pulse-amplification system[J]. Optics Letters, 39, 6875-6878(2014). http://www.ncbi.nlm.nih.gov/pubmed/25503019

    [4] Sun R Y, Tan F Z, Jin D C et al. 1 μm femtosecond fiber chirped pulse amplification system based on dispersion wave[J]. Chinese Journal of Lasers, 45, 0101001(2018).

    [5] Hao J Y, Liu B W, Song H Y et al. Femtosecond fiber amplification system based on third-order dispersion compensation technique[J]. Laser & Optoelectronics Progress, 55, 051404(2018).

    [6] Chen H, Guan H Y, Zeng L J et al. Fabrication of broadband, high-efficiency, metal-multilayer-dielectric gratings[J]. Optics Communications, 329, 103-108(2014). http://www.sciencedirect.com/science/article/pii/S0030401814004490

    [7] Chen J M, Huang H P, Zhang Y B et al. Reducing electric-field-enhancement in metal-dielectric grating by designing grating with asymmetric ridge[J]. Scientific Reports, 8, 5228(2018). http://europepmc.org/abstract/MED/29588450

    [8] Fedulova E, Fritsch K, Brons J et al. Highly-dispersive mirrors reach new levels of dispersion[J]. Optics Express, 23, 13788-13793(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-11-13788

    [9] Chen Y, Wang Y Z, Wang L J et al. High dispersive mirrors for erbium-doped fiber chirped pulse amplification system[J]. Optics Express, 24, 19835-19840(2016). http://www.ncbi.nlm.nih.gov/pubmed/27557259

    [10] Liu J, Wang Y Z, Zhao R R et al. Low vibration and high dispersion mirror pair in femtosecond pulsed Ti∶sapphire laser[J]. Chinese Journal of Lasers, 45, 1003001(2018).

    [11] Glebov L, Smirnov V, Rotari E et al. Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses[J]. Optical Engineering, 53, 051514(2014). http://spie.org/Publications/Journal/10.1117/1.OE.53.5.051514

    [12] Rever M, Huang S H, Yahus C et al. 200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings. [C]∥Conference on Lasers and Electro-Optics 2009, May 31-June 5, 2009, Baltimore, Maryland, United States. Washington, D. C.: OSA, CMBB2(2009).

    [13] Sims R A, Kadwani P, Shah L et al. Chirped pulse amplification in Tm doped fiber using a chirped Bragg grating[J]. Proceedings of SPIE, 8601, 86012P(2013). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2004112

    [14] Sun R Y, Jin D C, Tan F Z et al. High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating[J]. Optics Express, 24, 22806-22812(2016). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-24-20-22806

    [15] Bartulevicius T, Frankinas S, Michailovas A et al. Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile[J]. Optics Express, 25, 19856-19862(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-17-19856

    [16] Kaim S, Mokhov S, Zeldovich B Y et al. Stretching and compressing of short laser pulses by chirped volume Bragg gratings: analytic and numerical modeling[J]. Optical Engineering, 53, 051509(2014). http://spie.org/Publications/Journal/10.1117/1.OE.53.5.051509

    [17] Feng J S, Zhang X, Wu D S et al. Diffraction in chirped volume Bragg gratings[J]. Chinese Optics Letters, 13, s10901(2015). http://www.cqvip.com/QK/85954X/201513/668657337.html

    [18] Yamada M, Sakuda K. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach[J]. Applied Optics, 26, 3474-3478(1987). http://europepmc.org/abstract/MED/20490085

    [19] Kogelnik H. Coupled wave theory for thick hologram gratings[J]. The Bell System Technical Journal, 48, 2909-2947(1969). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6774000

    [20] Zhang Z G[M]. Femtosecond laser technology, 15-28(2011).

    [21] Feng J S. Spectral responses and dispersion properties of chirped volume Bragg gratings[D]. Wuhan: Huazhong University of Science and Technology, 32-39(2011).

    Huifang Dai, Peng Chen, Jingyin Zhao, Yong Sun, Jiao Xu, Fanyu Kong, Yunxia Jin. Impulse Response Characteristics of Chirped Volume Bragg Gratings[J]. Acta Optica Sinica, 2019, 39(10): 1005002
    Download Citation