• Opto-Electronic Engineering
  • Vol. 31, Issue 7, 31 (2004)
[in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]2, and [in Chinese]2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Design of single-photon detection system used in quantum cryptography communication[J]. Opto-Electronic Engineering, 2004, 31(7): 31 Copy Citation Text show less
    References

    [1] PHOENIX S J D, TOWNSEND P D. Quantum cryptography: how to beat the code breakers using quantum mechanics [J]. Contemporary Physics, 1995, 36(3): 165-19.

    [2] LO H K, CHAU H F. Unconditional security of quantum key distribution over arbitrarily long distances [J]. Science, 1999, 283(3): 2050-2056.

    [3] WON Y H, DOYEOL A, SUNG W H. Eavesdropper's optimal information invariations of Bennett-Brassard 1984 quantum key distribution in the coherent attacks [J]. Phy. Lett. A, 2001, 279(1): 133-138.

    [4] MULLER A, HERZOG T, HUTTNER B, et al. "Plug and play" systems for quantum cryptography [J]. Appl. Phys. Lett, 1997, 70(7): 793-795.

    [5] BETHUNE D, RISK W. An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light [J]. IEEE J. of Quantum Electronics, 2000, 36(3): 340-347.

    [6] STUCKI D, GISH N, GUINNARD O, et al. Quantum key distribution over 67km with a plug & play system [J]. New J. of Physics, 2002, 41(4): 1-8.

    [7] ZBINDEN H, GAUTIER J D, GISIN N, et al. Interferometry with Faraday mirrors for quantum cryptography [J]. Electron. Lett, 1998, 33(7): 586-588.

    [8] LACAITA A, ZAPPA F, COVA S, et al. Single photon detection beyond 1μm: performances of commercially available InGaAs/InP detectors [J]. Appl. Opt, 1996, 35(16): 2986-2996.

    [9] PHILIP A H, GERALD S B, ALISON Y L, et al. Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55μm [J]. Appl. Opt, 2000, 39(36): 6818-6829.

    [10] JOHN G R, THOMAS E W, KEVIN D R, et al. Single-photon counting for the 1300-1600 nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes [J]. Appl. Opt, 2000, 39(36): 6746-6753.

    [11] IVAN P. Peltier-cooled and actively quenched operation of InGaAs/InP avalanche photodiodes as photon counters at a 1.55μm wavelength [J]. Appl. Opt, 2001, 40(33): 6012-6018.

    [12] TOMITA A, NAKAMURA K. Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm [J]. Optics Letters, 2002, 27(20): 1827-1829.

    [13] BROWN R G W, RIDLEY K D, RARITY J G. Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching [J]. Applied Optics, 1986, 25(22): 4122-4126.

    [14] KARLSSON A, BOURENNANE M, RIBORDY G, et al. A single photon counter for long-haul telecom [J]. IEEE Circuits Devices Mag, 1999, 15(6): 35-40.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Design of single-photon detection system used in quantum cryptography communication[J]. Opto-Electronic Engineering, 2004, 31(7): 31
    Download Citation