• Opto-Electronic Engineering
  • Vol. 50, Issue 12, 230242-1 (2023)
Junhua Ding1,2 and Minghui Yuan1,2,*
Author Affiliations
  • 1Terahertz Technology Innovation Research Institute, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.12086/oee.2023.230242 Cite this Article
    Junhua Ding, Minghui Yuan. A multi-target semantic segmentation method for millimetre wave SAR images based on a dual-branch multi-scale fusion network[J]. Opto-Electronic Engineering, 2023, 50(12): 230242-1 Copy Citation Text show less
    DBMFnet network structure diagram
    Fig. 1. DBMFnet network structure diagram
    Feature fusion process
    Fig. 2. Feature fusion process
    Different feature fusion methods. (a) FCM; (b) FDM; (c) MSFM
    Fig. 3. Different feature fusion methods. (a) FCM; (b) FDM; (c) MSFM
    HM-SAR security images. (a) Back scanning image of the human body; (b) Frontal scanning image of the human body
    Fig. 4. HM-SAR security images. (a) Back scanning image of the human body; (b) Frontal scanning image of the human body
    DBMFnet thermal diagram
    Fig. 5. DBMFnet thermal diagram
    Test results of each model. Each row represents the test results of the same picture, and each column represents the test results of the same model. Black denotes the background, green denotes the wrench, yellow denotes the pistol, red denotes the hammer, and blue denotes the knife
    Fig. 6. Test results of each model. Each row represents the test results of the same picture, and each column represents the test results of the same model. Black denotes the background, green denotes the wrench, yellow denotes the pistol, red denotes the hammer, and blue denotes the knife
    Baseline model
    Fig. 7. Baseline model
    StageOutputDBFENStageOutputDBFEN
    Conv1256×2563×3, 64, stride 2Conv664×64(3×3,1283×3,128)×2
    Conv2128×1283×3, 64, stride 2Conv716×16(3×3,2563×3,512)×2
    Conv364×64(3×3,643×3,128)×2Conv864×64(3×3,1283×3,256)×2
    Conv464×64(3×3,1283×3,128)×2Conv98×8(3×3,5123×3,1024)×2
    Conv532×32(3×3,1283×3,256)×2
    Table 1. Architectures of DBFEN
    Network modelMPA/%mIoU/%F1/%Network modelMPA/%mIoU/%F1/%
    U-net80.2970.3581.87Deeplabv3+81.0570.5882.00
    Pspnet82.9872.3283.28HRnet-v282.3372.90 83.69
    FCN-8s81.2972.1183.11DBMFnet (ours)85.0175.4485.21
    Table 2. Comparisons of the segmentation performance of each model in the HM-SAR dataset
    ClassU-netPspnetDeeplabv3+HRnet-v2FCN-8sDBMFnet (ours)
    PreIoUPreIoUPreIoUPreIoUPreIoUPreIoU
    Hammer80.7461.9876.4963.7 80.1563.9979.9367.3579.1665.1781.9169.33
    Wrench82.6666.7882.8871.8480.6166.5778.80 66.1584.0469.5684.2275.24
    Pistol75.6363.7777.3 64.2175.4562.6585.7169.4781.0765.8187.8970.56
    Knife78.5959.4 81.3662.0178.8259.8481.6761.6880.0660.1682.5566.15
    Table 3. Comparisons of the objects segmentation performance of each model in the HM-SAR dataset
    Network modelParams/MGFLOPsSpeed/(f/s)
    U-net24.89452.3132
    Pspnet46.7 118.4333.5
    FCN-8s32.95277.7416
    Deeplabv3+54.71166.8721
    HRnet29.55 80.1811.5
    DBMFnet(our)19.5447.3626
    Table 4. Calculation complexity and inference speed of each model
    Network modelmIoUParams/MGFLOPs
    Baseline72.6123.1538.78
    Deeplabv3+(FCM)70.5854.71166.87
    FCN-8s(FDM)72.1132.95277.74
    Baseline+FCM74.1 22.44100.8
    Baseline+FDM73.1621.65 45.27
    Baseline+MSFM75.4423.06 47.86
    Table 5. Comparisons of models using different decoder modules
    Junhua Ding, Minghui Yuan. A multi-target semantic segmentation method for millimetre wave SAR images based on a dual-branch multi-scale fusion network[J]. Opto-Electronic Engineering, 2023, 50(12): 230242-1
    Download Citation