• Opto-Electronic Engineering
  • Vol. 46, Issue 3, 1 (2019)
Jian Jialing, Cao Lin, Wei Xiqiao, Guo Jinxin**, Wang Dayong, and Zhang Xinping
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180552 Cite this Article
    Jian Jialing, Cao Lin, Wei Xiqiao, Guo Jinxin*, Wang Dayong, Zhang Xinping. A review of photopolymers on holography volume data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1 Copy Citation Text show less
    References

    [1] Qing C. Optical storage meets the challenge of cold data storage[J]. IT Operation and Maintenance, 2016(2): 71.

    [2] Li J H, Liu J P, Lin X, et al. Volume holographic data storage[J]. Chinese Journal of Lasers, 2017, 44(10): 100001.

    [3] Tan X D. Optical data storage technologies for big data era[J]. Infrared and Laser Engineering, 2016, 45(9): 0935001.

    [4] Haw M. Holographic data storage: the light fantastic[J]. Nature, 2003, 422(6932): 556–558.

    [6] Chen G N, Ni M L, Peng H Y, et al. Photoinitiation and inhibition under monochromatic green light for storage of colored 3D images in holographic polymer-dispersed liquid crystals[J]. ACS Applied Materials and Interfaces, 2017, 9(2): 1810–1819.

    [7] Zhao Y, Zhong J, Ye Y, Luo Z X, et al. Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording[J]. Materials Letters, 2015, 138(1): 284–286.

    [8] Li C M Y, Cao L C, Wang Z, et al. Hybrid polarization-angle multiplexing volume holography in gold nanoparticle-doped photopolymer[J]. Optics Letters, 2014, 39(24): 6891–6894.

    [9] Campbell M, Sharp D N, Harrison M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 2000, 404(6773): 53–56.

    [10] Ye C F, Kamysiak K T, Sullivan A C, et al. Mode profile imaging and loss measurement for uniform and tapered single-mode 3D waveguides in diffusive photopolymer[J]. Optics Express, 2012, 20(6): 6575–6583.

    [11] Zhuo D H, Tao S Q, Shi M Q, et al. Shrinkage of photopolymer for holographic recording materials[J]. Chinese Journal of Lasers, 2007, 34(11): 1543–1547.

    [12] Jeudy M J, Robillard J J. Spectral photosensitization of a variable index material for recording phase holograms with high efficiency[J]. Optics Communications, 1975, 13(1): 25–28.

    [13] Lawrence J R, O’Neill F T, Sheridan J T. Adjusted intensity nonlocal diffusion model of photopolymer grating formation[J]. Journal of the Optical Society of America B, 2002, 19(4): 621–629.

    [14] Gleeson M R, Kelly J V, Sabol D, et al. Modeling the photochemical effects present during holographic grating formation in photopolymer materials[J]. Journal of Applied Physics, 2007, 102(2): 023108.

    [15] Gleeson M R, Sabol D, Liu S, et al. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length[J]. Journal of the Optical Society of America B, 2008, 25(3): 396–406.

    [16] Guo J X, Gleeson M R, Liu S, et al. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling[J]. Journal of Optics, 2011, 13(9): 095601.

    [17] Guo J X, Gleeson M R, Liu S, et al. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results[J]. Journal of Optics, 2011, 13(9): 095602.

    [18] Gallego S, Ortu o M F, Neipp C, et al. Improved maximum uniformity and capacity of multiple holograms recorded in absorbent photopolymers[J]. Optics Express, 2007, 15(15): 9308–9319.

    [19] Gallego S, Márquez A, Ortu o M, et al. Monomer diffusion in sustainable photopolymers for diffractive optics applications[J]. Optical Materials, 2011, 33(11): 1626–1629.

    [20] Steckman G J, Solomatine I, Zhou G, et al. Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory[J]. Optics Letters, 1998, 23(16): 1310–1312.

    [21] Fujii R, Guo J X, Klepp J, et al. Nanoparticle polymer composite volume gratings incorporating chain transfer agents for holography and slow-neutron optics[J]. Optics Letters, 2014, 39(12): 3453–3456.

    [22] Guo J X, Fujii R, Ono T, et al. Effects of chain-transferring thiol functionalities on the performance of nanoparticle-polymer composite volume gratings[J]. Optics Letters, 2014, 39(23): 6743–6746.

    [23] Liu Y, Fan F L, Hong Y F, et al. Volume holographic recording in Irgacure 784-doped PMMA photopolymer[J]. Optics Express, 2017, 25(17): 20654–20662.

    [24] Fan F L, Liu Y, Hong Y F, et al. Improving the polarization-holography performance of PQ/PMMA photopolymer by doping with THMFA[J]. Optics Express, 2018, 26(14): 17794–17803.

    [25] Liu J P, Horimai H, Lin X, et al. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding[J]. Optics Express, 2018, 26(4): 3828–3838.

    [26] Liu P, Chang F W, Zhao Y, et al. Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures[J]. Optics Express, 2018, 26(2): 1072–1082.

    [27] Liu P, Zhao Y, Li Z R, et al. Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer[J]. Optics Express, 2018, 26(6): 6993–7004.

    [28] Liu P, Wang L L, Zhao Y, et al. Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions[J]. Optical Materials Express, 2018, 8(6): 1441–1453.

    [29] Posner T. Beitr ge zur Kenntniss der unges ttigten Verbindungen. II. Ueber die addition von mercaptanen an unges ttigte kohlenwasserstoffe[J] Berichte der deutschen chemischen Gesellschaft, 1905, 38(1): 646–657.

    [30] Ashworth F, Burkhardt G N. Effects induced by the phenyl group. Part I. The addition of polar reagents to styrene and the behaviour of the halogenated ethylbenzenes[J]. Journal of the Chemical Society (Resumed), 1928: 1791–1802.

    [31] Kolb H C, Finn M G, Sharpless K B. Click chemistry: diverse chemical function from a few good reactions[J]. Angewandte Chemie International Edition, 2001, 40(11): 2004–2021.

    [32] Hata E, Mitsube K, Momose K, et al. Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization[J]. Optical Materials Express, 2011, 1(2): 207–222.

    [33] Takayama S, Nagaya K, Momose K, et al. Effects of symbol modulation coding on readout fidelity of shift-multiplexed holographic digital data page storage in a photopolymerizable nanoparticle-(thiol-ene)polymer composite film[J]. Applied Optics, 2014, 53(10): B53–B59.

    [34] Fukuda Y, Tomita Y. Spatial frequency responses of anisotropic refractive index gratings formed in holographic polymer dispersed liquid Crystals[J]. Materials, 2016, 9(3): 188.

    [35] Ye S, Cramer N B, Smith I R, et al. Reaction kinetics and reduced shrinkage stress of thiol-yne-methacrylate and thiol-yne-acrylate ternary systems[J]. Macromolecules, 2011, 44(23): 9084–9090.

    [36] Nair D P, Cramer N B, Gaipa J C, et al. Two-stage reactive polymer network forming systems[J]. Advanced Functional Materials, 2012, 22(7): 1502–1510.

    [37] Peng H Y, Nair N P, Kowalski B A, et al. High performance graded rainbow holograms via two-stage sequential orthogonal thiol-click chemistry[J]. Macromolecules, 2014, 47(7): 2306–2315.

    [38] Suzuki N, Tomita Y. Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%[J]. Applied Optics, 2004, 43(10): 2125–2129.

    [39] Goldenberg L M, Sakhno O V, Smirnova T N, et al. Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation[J]. Chemistry of Materials, 2008, 20(14): 4619–4627.

    [40] Li C M Y, Cao L C, Li J M, et al. Improvement of volume holographic performance by plasmon-induced holographic absorption grating[J]. Applied Physics Letters, 2013, 102(6): 061108.

    [41] Li C M Y, Cao L C, He Q S, et al. Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer[J]. Optics Express, 2014, 22(5): 5017–5028.

    [42] Cao L C, Wu S H, Hao J P, et al. Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite[J]. Applied Physics Letters, 2017, 111(14): 141104.

    [43] Zhang M H, Zheng J H, Gui K, et al. Electro-optical characteristics of holographic polymer dispersed liquid crystal gratings doped with nanosilver[J]. Applied Optics, 2013, 52(31): 7411–7418.

    [44] Xue X Y, Hai F S, Gao L Z, et al. Effect of nanoparticle diameter on the holographic properties of gold nanoparticle dispersed acrylate photopolymer films[J]. Optik, 2013, 124(24): 6987–6990.

    [45] Li C L, Li X X, Xue X Y, et al. Holographic properties of Fe3O4 nanoparticle-doped organic-inorganic hybrid photopolymer[J]. Optik, 2014, 125(21): 6509–6512.

    [46] Li Y X, Wang C H, Li H L, et al. Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites[J]. Applied Optics, 2015, 54(33): 9799–9802.

    [47] Booth B L. Photopolymer material for holography[J]. Applied Optics, 1972, 11(12): 2994–2995.

    [48] Waldman D A, Butler C J, Raguin D H. CROP holographic storage media for optical data storage greater than 100 bits/μm2[J]. Proceedings of SPIE, 2003, 5216: 10–25.

    [49] Dhar L, Curtis K, Tackitt M, et al. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems[J]. Optics Letters, 1998, 23(21): 1710–1712.

    [50] St ckel N, Bruder F K, Askham F R, et al. Advantageous recording media for holographic applications: 8053147[P]. 2011-11-08.

    [51] Dhar L. High performance recording media for holographic data storage[C]//Proceedings of the 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Rio Grande, Puerto Rico, 2004: 727–728.

    [52] Horimai H, Tan X D, Li J. Collinear holography[J]. Applied Optics, 2005, 44(13): 2575–2579.

    [53] Gruenwedel E. GE develops disc to store 100 DVDs, 20 BDS[J]. Home Media Magazine, 2009, 31(18): 17.

    [54] Ayres M R, Anderson K, Askham F, et al. Holographic data storage at 2+ Tbit/in2[J]. Proceedings of SPIE, 2015, 9386: 93860G.

    [55] Takabayashi M, Okamoto A. Self-referential holography and its applications to data storage and phase-to-intensity conversion[J]. Optics Express, 2013, 21(3): 3669–3681.

    [56] Eto T, Takabayashi M, Okamoto A, et al. Numerical simulations on inter-page crosstalk characteristics in three-dimensional shift multiplexed self-referential holographic data storage[J]. Japanese Journal of Applied Physics, 2016, 55(8S3): 08RD01.

    [57] Klepp J, Pruner C, Tomita Y, et al. Holographic gratings for slow-neutron optics[J]. Materials, 2012, 5(12): 2788–2815.

    [58] Zhang J, Dai H T, Yan C, et al. Lasing properties from dye-doped holographic polymer dispersed liquid crystal confined in two-dimensional cylindrical geometry[J]. Optical Materials Express, 2016, 6(4): 1367–1375.

    CLP Journals

    [1] JIN Xin, HU Ying. Detection of Vehicle Crews Based on Modified Faster R-CNN[J]. Infrared Technology, 2020, 42(11): 1103

    Jian Jialing, Cao Lin, Wei Xiqiao, Guo Jinxin*, Wang Dayong, Zhang Xinping. A review of photopolymers on holography volume data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1
    Download Citation