• Laser & Optoelectronics Progress
  • Vol. 54, Issue 1, 10004 (2017)
Yang Dongdong* and Cai Jinghui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.010004 Cite this Article Set citation alerts
    Yang Dongdong, Cai Jinghui. Research Progress of Micro-Nano Fabrication by Picosecond Laser[J]. Laser & Optoelectronics Progress, 2017, 54(1): 10004 Copy Citation Text show less
    References

    [1] Zhou Hui, Yang Haifeng, Research status and prospect of the lithography and micro-nano manufacturing technology[J]. Micronanoelectronic Technology, 2012, 49(9): 616-618.

    [2] Zhang Bi, Luo Hongping, Zhou Zhixiong, et al. Recent advances in electrochemical micromachining[J]. China Mechanical Engineering, 2007, 18(12): 1505-1511.

    [3] Zhang Xiang, Zhang Shixun, Li Qian, et al. Recent advances in micro injection molding[J]. Polymer Materials Science & Engineering, 2012, 28(5): 148-152.

    [4] Peng Jing, Xu Zhimou, Wu Xiaofeng, et al. A study of LED with surface photonic crystal structure fabricated by the nanoimprint lithography[J]. Acta Physica Sinica, 2013, 62(3): 036104.

    [5] Dausinger F, Hugel H, Konov V I. Micromachining with ultrashort laser pulses: from basic understanding to technical applications[C]. SPIE, 2003, 5147: 106-115.

    [6] Li Gang, Chang Liang, Zhang Bingyuan, et al. ps laser pulse regenerative amplifier pumped by LD[J]. Infrared and Laser Engineering, 2007, 36(s1): 122-124.

    [7] Ma Yunfeng, Yu Jin, Niu Gang, et al. 25 W high repetition rate picosecond green laser[J]. Chinese J Lasers, 2011, 38(12): 1202010.

    [8] Huang Yutao, Fan Zhongwei, Niu Gang, et al.100 kHz repetition rate picosecond regenerative amplifier with high pulse stability[J]. Chinese J Lasers, 2012, 39(5): 0502009.

    [9] Yan Ying, Niu Gang, Fan Zhongwei, et al. Laser diode end-pumped kilohertz Nd∶YVO4 picosecond regenerative amplifier[J]. Laser & Optoeletronics Progress, 2012, 49(2): 021402.

    [10] Fu Jie, Pang Qingsheng, Chang Liang, et al. Research on cavity-dumping mode-locked laser of picosecond at 10 kHz[J]. Acta Optica Sinica, 2011, 31(3): 0314002.

    [11] Yang Chao, Chen Meng, Bai Zhenxu, et al. Research on industrial processing used high repetition rate cavity-dumping mode-locked picosecond laser[J]. Applied Laser, 2013, 33(2): 204-207.

    [12] Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.

    [13] Jandeleit J, Horn A, Weichenhain R, et al. Fundamental investigations of micromachining by nano- and picosecond laser radiation[J]. Applied Surface Science, 1998, 127: 885-891.

    [14] Foehl C, Breitling D, Jasper K, et al. Precision drilling of metals and ceramics with short- and ultrashort-pulsed solid state lasers[C]. SPIE, 2002, 4426: 104-107.

    [15] Duan J P, Chen M, Bai Z X, et al. Research on the metal ablation thresholds of picosecond laser[J]. Applied Mechanics and Materials, 2012, 190-191: 547-550.

    [16] Peng Guoping, Peng Xiuyun. Processing technology of film cooling holes on engine turbine guide vanes[J]. Aerospace Manufacturing Technology, 2008(6): 26-29.

    [17] Yin Dapeng. Maching technology of cooling air film holes on turbine blades of aero plane engines[D]. Dalian: Dalian University of Technology, 2013: 10-30.

    [18] Zhang Hua, Xu Jiawen, Wang Jiming. Experimental study of hybrid processing of jet electrochemical machining and laser beam machining on nickel-based superalloy[J]. Materials Engineering, 2009(4): 75-80.

    [19] Zhang Xiaobing, Sun Ruifeng. Sequential laser drilling technology[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 894-901.

    [20] Knappe R, Haloui H, Seifert A, et al. Scaling ablation rates for picosecond lasers using burst micromachining[C]. SPIE, 2010, 7585: 75850H.

    [21] Herrmann T, Klimt B, Siegel F. Micromachining with picosecond laser pulses[EB/OL].(2014-10-01)[2015-08-20].http://www.industrial-lasers.com/articles/2004/10/micromachining-with-picosecond-laser-pulses.html.

    [22] Klimt B H, Herrmann T. Very high repetition rate ps-laser for cost effective micro-machining[C]. Photonic Applications Systems Technologies Conference, 2005, PThB: PThB2.

    [23] Karnakis D, Rutterford G, Knowles M, et al. High quality laser milling of ceramics, dielectrics and metals using nanosecond and picosecond lasers[C]. SPIE, 2006, 6106: 610604.

    [24] Li Yong, Zhu Yun. Research of quarts glass precise scribing by 1064 nm picosecond laser[J]. Laser Journal, 2015, 36(1): 132-134.

    [25] Bian Xiaowei, Chen Meng, Li Gang. Study on machining of sapphire by 355 nm nanosecond and 1064 nm picosecond laser[J]. Laser & Optoeletronics Progress, 2016, 53(5): 051404.

    [26] Geys P, Raiukaitis G, Ehrhardt M, et al. ps-laser scribing of CIGS films at different wavelengths[J]. Applied Physics A, 2010, 101(2): 373-378.

    [27] Heise G, Heiss A, Vogt H, et al. Ultrafast lasers improve the efficiency of CIS thin film solar cells[J]. Physics Procedia, 2012, 39: 702-708.

    CLP Journals

    [1] Wang Yalan, Wang Qing. Research Progress in Single-Crystal Fiber Amplifiers[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100006

    Yang Dongdong, Cai Jinghui. Research Progress of Micro-Nano Fabrication by Picosecond Laser[J]. Laser & Optoelectronics Progress, 2017, 54(1): 10004
    Download Citation