• Photonics Research
  • Vol. 8, Issue 8, 1368 (2020)
Kuilong Li1、3、*, Wenjia Wang1、4、*, Jianfei Li1, Wenxin Jiang1, Min Feng1, and Yang He2
Author Affiliations
  • 1School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences),Jinan 250353, China
  • 2Institute of Electronic and Electrical, Changzhou College of Information Technology, Changzhou 213164, China
  • 3e-mail: likuilong123@126.com
  • 4e-mail: wangwenjia87@sina.com
  • show less
    DOI: 10.1364/PRJ.396880 Cite this Article Set citation alerts
    Kuilong Li, Wenjia Wang, Jianfei Li, Wenxin Jiang, Min Feng, Yang He. High-responsivity, self-driven photodetectors based on monolayer WS2/GaAs heterojunction[J]. Photonics Research, 2020, 8(8): 1368 Copy Citation Text show less
    References

    [1] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 6, 183-191(2007).

    [2] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis. Single-layer MoS2 transistors. Nat. Nanotechnol., 6, 147-150(2011).

    [3] X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics, 7, 883-887(2013).

    [4] C. Wu, J. Z. Ou, F. He, J. Ding, W. Luo, M. Wu, H. Zhang. Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability. Nano Energy, 65, 104061(2019).

    [5] Q. H. Wang, M. S. Strano, K. Kalantar-Zadeh, A. Kis, J. N. Coleman. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699-712(2012).

    [6] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, L. Colombo. Electronics based on two-dimensional materials. Nat. Nanotechnol., 9, 768-779(2014).

    [7] C. Cong, J. Shang, Y. Wang, T. Yu. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater., 6, 1700767(2018).

    [8] W. Wang, K. Li, Y. Wang, W. Jiang, X. Liu, H. Qi. Investigation of the band alignment at MoS2/PtSe2 heterojunctions. Appl. Phys. Lett., 114, 201601(2019).

    [9] L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, H. Li. Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector. Nano Energy, 59, 492-499(2019).

    [10] Y.-C. Wu, W.-R. Liu. Few-layered MoSe2 ultrathin nanosheets as anode materials for lithium ion batteries. J. Alloys Compd., 813, 152074(2020).

    [11] H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, Z. Zhou. High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett., 14, 3594-3601(2014).

    [12] J.-H. Lin, Y.-H. Tsao, M.-H. Wu, T.-M. Chou, Z.-H. Lin, J. M. Wu. Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor. Nano Energy, 31, 575-581(2017).

    [13] L. Yuan, L. Huang. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale, 7, 7402-7408(2015).

    [14] J. D. Yao, Z. Q. Zheng, J. M. Shao, G. W. Yang. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale, 7, 14974-14981(2015).

    [15] H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, J. H. Warner. Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano, 10, 7866-7873(2016).

    [16] C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, J. C. Ho. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res., 11, 3371-3384(2018).

    [17] Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, J. Xu. Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability. Appl. Surf. Sci., 481, 1127-1132(2019).

    [18] D. Jariwala, T. J. Marks, M. C. Hersam. Mixed-dimensional van der Waals heterostructures. Nat. Mater., 16, 170-181(2017).

    [19] P. Gehring, R. Urcuyo, D. L. Duong, M. Burghard, K. Kern. Thin-layer black phosphorus/GaAs heterojunction p-n diodes. Appl. Phys. Lett., 106, 233110(2015).

    [20] Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, S. Xu. Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity. Nano Energy, 23, 89-96(2016).

    [21] H.-S. Kim, M. Patel, J. Kim, M. S. Jeong. Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible–NIR optoelectronic devices. ACS Appl. Mater. Interfaces, 10, 3964-3974(2018).

    [22] Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, S. Lin. Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity. Nano Energy, 47, 140-149(2018).

    [23] K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, Y. He. Carrier dynamics in monolayer WS2/GaAs heterostructures. Appl. Surf. Sci., 500, 144005(2020).

    [24] T. Kato, T. Kaneko. Transport dynamics of neutral excitons and trions in monolayer WS2. ACS Nano, 10, 9687-9694(2016).

    [25] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, J. Shan. Tightly bound trions in monolayer MoS2. Nat. Mater., 12, 207-211(2012).

    [26] K. Li, K.-W. Ang, Y. Lv, X. Liu. Effects of Al2O3 capping layers on the thermal properties of thin black phosphorus. Appl. Phys. Lett., 109, 261901(2016).

    [27] K. Li, T. Wang, W. Wang, X. Gao. Lattice vibration properties of MoS2/PtSe2 heterostructures. J. Alloys Compd., 820, 153192(2020).

    [28] X. Cong, M. Lin, P.-H. Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 40, 091001(2019).

    [29] W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, P.-H. Tan. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Mater., 3, 025016(2016).

    [30] C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater., 2, 131-136(2014).

    [31] A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, A. N. Pasupathy. Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides. Chem. Mater., 30, 5148-5155(2018).

    [32] X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, Q. J. Wang. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun., 9, 1545(2018).

    [33] L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, L.-B. Luo. Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces, 5, 9362-9366(2013).

    [34] L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, Y. H. Tsang. High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci. Rep., 6, 20343(2016).

    [35] E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, X. Li. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photon., 6, 565-572(2019).

    [36] W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, H. Zhang. Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale, 10, 2404-2412(2018).

    [37] Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, Q. Bao. Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl. Mater. Interfaces, 9, 36137-36145(2017).

    [38] N. T. Shelke, B. R. Karche. Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector. J. Alloys Compd., 653, 298-303(2015).

    [39] P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, K. Xiao. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett., 13, 1649-1654(2013).

    [40] L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, Y. H. Tsang. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater., 28, 1705970(2018).

    [41] J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, X. Zhang. Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed. Scripta Mater., 176, 1-6(2020).

    [42] J. Yao, Z. Zheng, G. Yang. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J. Mater. Chem. C, 4, 7831-7840(2016).

    [43] Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, D. Li. Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors. Photon. Res., 7, 1127-1133(2019).

    [44] C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, Y. Liu. Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C, 5, 1494-1500(2017).

    Kuilong Li, Wenjia Wang, Jianfei Li, Wenxin Jiang, Min Feng, Yang He. High-responsivity, self-driven photodetectors based on monolayer WS2/GaAs heterojunction[J]. Photonics Research, 2020, 8(8): 1368
    Download Citation