• Photonics Research
  • Vol. 10, Issue 7, 1624 (2022)
Pengming Song1、†, Shaowei Jiang1、†, Tianbo Wang, Chengfei Guo, Ruihai Wang, Terrance Zhang, and Guoan Zheng*
Author Affiliations
  • Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
  • show less
    DOI: 10.1364/PRJ.460549 Cite this Article Set citation alerts
    Pengming Song, Shaowei Jiang, Tianbo Wang, Chengfei Guo, Ruihai Wang, Terrance Zhang, Guoan Zheng. Synthetic aperture ptychography: coded sensor translation for joint spatial-Fourier bandwidth expansion[J]. Photonics Research, 2022, 10(7): 1624 Copy Citation Text show less
    References

    [1] J. Rodenburg, A. Maiden. Ptychography. Springer Handbook of Microscopy, 819-904(2019).

    [2] M. Guizar-Sicairos, P. Thibault. Ptychography: a solution to the phase problem. Phys. Today, 74, 42-48(2021).

    [3] W. Hoppe, G. Strube. Diffraction in inhomogeneous primary wave fields. 2. Optical experiments for phase determination of lattice interferences. Acta Crystallogr. A, 25, 502-507(1969).

    [4] H. M. L. Faulkner, J. Rodenburg. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett., 93, 023903(2004).

    [5] M. Guizar-Sicairos, J. R. Fienup. Phase retrieval with transverse translation diversity: a nonlinear optimization approach. Opt. Express, 16, 7264-7278(2008).

    [6] A. M. Maiden, J. M. Rodenburg. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy, 109, 1256-1262(2009).

    [7] P. Thibault, M. Dierolf, O. Bunk, A. Menzel, F. Pfeiffer. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy, 109, 338-343(2009).

    [8] X. Ou, G. Zheng, C. Yang. Embedded pupil function recovery for Fourier ptychographic microscopy. Opt. Express, 22, 4960-4972(2014).

    [9] P. Thibault, A. Menzel. Reconstructing state mixtures from diffraction measurements. Nature, 494, 68-71(2013).

    [10] D. J. Batey, D. Claus, J. M. Rodenburg. Information multiplexing in ptychography. Ultramicroscopy, 138, 13-21(2014).

    [11] P. Song, R. Wang, J. Zhu, T. Wang, Z. Bian, Z. Zhang, K. Hoshino, M. Murphy, S. Jiang, C. Guo. Super-resolved multispectral lensless microscopy via angle-tilted, wavelength-multiplexed ptychographic modulation. Opt. Lett., 45, 3486-3489(2020).

    [12] Y. Yao, Y. Jiang, J. Klug, Y. Nashed, C. Roehrig, C. Preissner, F. Marin, M. Wojcik, O. Cossairt, Z. Cai. Broadband X-ray ptychography using multi-wavelength algorithm. J. Synchrotron. Radiat., 28, 309-317(2021).

    [13] A. M. Maiden, M. J. Humphry, J. Rodenburg. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A, 29, 1606-1614(2012).

    [14] A. M. Maiden, M. J. Humphry, F. Zhang, J. M. Rodenburg. Superresolution imaging via ptychography. J. Opt. Soc. Am. A, 28, 604-612(2011).

    [15] M. Odstrcil, P. Baksh, S. Boden, R. Card, J. Chad, J. Frey, W. Brocklesby. Ptychographic coherent diffractive imaging with orthogonal probe relaxation. Opt. Express, 24, 8360-8369(2016).

    [16] P. Song, C. Guo, S. Jiang, T. Wang, P. Hu, D. Hu, Z. Zhang, B. Feng, G. Zheng. Optofluidic ptychography on a chip. Lab Chip, 21, 4549-4556(2021).

    [17] S. Jiang, C. Guo, T. Wang, J. Liu, P. Song, T. Zhang, R. Wang, B. Feng, G. Zheng. Blood-coated sensor for high-throughput ptychographic cytometry on a Blu-Ray disc. ACS Sens., 7, 1058-1067(2022).

    [18] S. Jiang, C. Guo, P. Song, N. Zhou, Z. Bian, J. Zhu, R. Wang, P. Dong, Z. Zhang, J. Liao, J. Yao, B. Feng, M. Murphy, G. Zheng. Resolution-enhanced parallel coded ptychography for high-throughput optical imaging. ACS Photon., 8, 3261-3271(2021).

    [19] S. Jiang, C. Guo, P. Song, T. Wang, R. Wang, T. Zhang, Q. Wu, R. Pandey, G. Zheng. High-throughput digital pathology via a handheld, multiplexed, and AI-powered ptychographic whole slide scanner. Lab Chip(2022).

    [20] S. Jiang, C. Guo, Z. Bian, R. Wang, J. Zhu, P. Song, P. Hu, D. Hu, Z. Zhang, K. Hoshino, B. Feng, G. Zheng. Ptychographic sensor for large-scale lensless microbial monitoring with high spatiotemporal resolution. Biosens. Bioelectron., 196, 113699(2022).

    [21] S. Jiang, J. Zhu, P. Song, C. Guo, Z. Bian, R. Wang, Y. Huang, S. Wang, H. Zhang, G. Zheng. Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. Lab Chip, 20, 1058-1065(2020).

    [22] L. Loetgering, S. Witte, J. Rothhardt. Advances in laboratory-scale ptychography using high harmonic sources. Opt. Express, 30, 4133-4164(2022).

    [23] F. Pfeiffer. X-ray ptychography. Nat. Photonics, 12, 9-17(2018).

    [24] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [25] R. Horstmeyer, J. Chung, X. Ou, G. Zheng, C. Yang. Diffraction tomography with Fourier ptychography. Optica, 3, 827-835(2016).

    [26] C. Zuo, J. Sun, J. Li, A. Asundi, Q. Chen. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Opt. Lasers Eng., 128, 106003(2020).

    [27] S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, G. Zheng. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Opt. Express, 22, 13586-13599(2014).

    [28] J. Holloway, Y. Wu, M. K. Sharma, O. Cossairt, A. Veeraraghavan. SAVI: synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography. Sci. Adv., 3, e1602564(2017).

    [29] K. Wakonig, A. Diaz, A. Bonnin, M. Stampanoni, A. Bergamaschi, J. Ihli, M. Guizar-Sicairos, A. Menzel. X-ray Fourier ptychography. Sci. Adv., 5, eaav0282(2019).

    [30] P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, F. Pfeiffer. High-resolution scanning x-ray diffraction microscopy. Science, 321, 379-382(2008).

    [31] E. H. Tsai, I. Usov, A. Diaz, A. Menzel, M. Guizar-Sicairos. X-ray ptychography with extended depth of field. Opt. Express, 24, 29089-29108(2016).

    [32] P. Song, S. Jiang, H. Zhang, Z. Bian, C. Guo, K. Hoshino, G. Zheng. Super-resolution microscopy via ptychographic structured modulation of a diffuser. Opt. Lett., 44, 3645-3648(2019).

    [33] A. E. Tippie, A. Kumar, J. R. Fienup. High-resolution synthetic-aperture digital holography with digital phase and pupil correction. Opt. Express, 19, 12027-12038(2011).

    [34] A. Maiden, D. Johnson, P. Li. Further improvements to the ptychographical iterative engine. Optica, 4, 736-745(2017).

    [35] P. Song, S. Jiang, T. Wang, C. Guo, R. Wang, T. Zhang, G. Zheng. https://figshare.com/articles/figure/Supplementary_Note/19488821(2022). https://figshare.com/articles/figure/Supplementary_Note/19488821

    [36] S. Jiang, C. Guo, P. Hu, D. Hu, P. Song, T. Wang, Z. Bian, Z. Zhang, G. Zheng. High-throughput lensless whole slide imaging via continuous height-varying modulation of a tilted sensor. Opt. Lett., 46, 5212-5215(2021).

    [37] G. Zheng, C. Kolner, C. Yang. Microscopy refocusing and dark-field imaging by using a simple LED array. Opt. Lett., 36, 3987-3989(2011).

    [38] M. Odstrčil, A. Menzel, M. Guizar-Sicairos. Iterative least-squares solver for generalized maximum-likelihood ptychography. Opt. Express, 26, 3108-3123(2018).

    Pengming Song, Shaowei Jiang, Tianbo Wang, Chengfei Guo, Ruihai Wang, Terrance Zhang, Guoan Zheng. Synthetic aperture ptychography: coded sensor translation for joint spatial-Fourier bandwidth expansion[J]. Photonics Research, 2022, 10(7): 1624
    Download Citation