• Photonic Sensors
  • Vol. 10, Issue 3, 204 (2020)
Chahinez DAB1、*, Reji THOMAS2, and Andreas RUEDIGER3
Author Affiliations
  • 1Chemistry Department, Université de Montréal, Montreal H3C 3J7, Canada
  • 2Division of Research and development, Lovely Professional University, Punjab 144411, India
  • 3Nanophotonics-Nanoeletronicss, Institut National de la Recherche Scientifique INRS-EMT, Varennes J3X 1S2, Canada
  • show less
    DOI: 10.1007/s13320-019-0576-3 Cite this Article
    Chahinez DAB, Reji THOMAS, Andreas RUEDIGER. Design of a Plasmonic Platform to Improve the SERS Sensitivity for Molecular Detection[J]. Photonic Sensors, 2020, 10(3): 204 Copy Citation Text show less
    References

    [1] G. Demirel, H. Usta, M. Yilmaz, M. Celik, H. Ard-- Alida--, and F. Buyukserin, “Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms,” Journal of Materials Chemistry C, 2018, 6(20): 5314–5335.

    [2] G. V. Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. Alan Hatton, et al., “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Advanced Materials, 2009, 21(31): 3175–3180.

    [3] F. H. L. Koppens, D. E. Chang, and F. J. García De Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Letters, 2011, 11(8): 3370–3377.

    [4] D. Chahinez, T. Reji, and R. Andreas, “Modeling of the surface plasmon resonance tunability of silver/gold core–shell nanostructures,” RSC Advances, 2018, 8(35): 19616–19626.

    [5] T. Wei, Y. Liu, W. Dong, Y. Zhang, C. Huang, Y. Sun, et al., “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Applied Materials & Interfaces, 2013, 5(21): 10473–10477.

    [6] L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Letters, 2005, 5(10): 2034–2038.

    [7] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, et al., “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical Review Letters, 1997, 78(9): 1667–1670.

    [8] K. Kneipp, H. Kneipp, V. Kartha, R. Manoharan, G. Deinum, I. Itzkan, et al., “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Physical Review E, 1998, 57(6): 6281–6284.

    [9] A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” The Journal of Physical Chemistry B, 2000, 104(50): 11965–11971.

    [10] P. Strobbia, E. Languirand, and B. M. Cullum, “Recent advances in plasmonic nanostructures for sensing: a review,” Optical Engineering, 2015, 54(10): 100902.

    [11] K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chemical Reviews, 2011, 111(6): 3828–3857.

    [12] E. Ozbay, “Plasmonics : merging photonics and electronics at nanoscale dimensions,” Science, 2006, 311(5758): 189–193.

    [13] P. K. Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Accounts of Chemical Research, 2008, 41(12): 1578–1586.

    [14] P. C. Ray, “Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing,” Chemical Reviews, 2010, 110(9): 5332–5365.

    [15] M. Tabatabaei, A. Sangar, N. Kazemi-Zanjani, P. Torchio, A. Merlen, and F. Lagugné-Labarthet, “Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography,” The Journal of Physical Chemistry C, 2013, 117(28): 14778–14786.

    [16] H. Yuan, A. M. Fales, C. G. Khoury, J. Liu, and T. Vo-Dinh, “Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars,” Journal of Raman Spectroscopy, 2013, 44(2): 234–239.

    [17] J. Kumar, R. Thomas, R. S. Swathi, and K. G. Thomas, “Au nanorod quartets and Raman signal enhancement: towards the design of plasmonic platforms,” Nanoscale, 2014, 6(18): 10454–10459.

    [18] A. Garreau, M. Tabatabaei, R. Hou, G. Q. Wallace, P. R. Norton, and F. Lagugné-Labarthet, “Probing the plasmonic properties of heterometallic nanoprisms with near-field fluorescence microscopy,” The Journal of Physical Chemistry C, 2016, 120(36): 20267–20276.

    [19] G. Q. Wallace, M. Tabatabaei, R. Hou, M. J. Coady, P. R. Norton, T. S. Simpson, et al., “Superimposed arrays of nanoprisms for multispectral molecular plasmonics,” ACS Photonics, 2016, 3(9): 1723–1732.

    [20] C. Dab, C. Awada, A. Merlen, and A. Ruediger, “Near-field chemical mapping of gold nanostructures using a functionalized scanning probe,” Physical Chemistry Chemical Physics, 2017, 19(46): 31063–31071.

    [21] W. Zhang, Q. Li, and M. Qiu, “A plasmon ruler based on nanoscale photothermal effect,” Optics Express, 2013, 21(1): 172–181.

    [22] J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, and S. Lal, “Close encounters between two nanoshells,” Nano Letters, 2008, 8(4): 1212–1218.

    [23] R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Communications, 2012, 3: 825–829.

    [24] Q. Yan, A. Chen, S. J. Chua, and X. S. Zhao, “Nanosphere lithography from template-directed colloidal sphere assemblies,” Journal of Nanoscience and Nanotechnology, 2006, 6(6): 1815–1818.

    [25] G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Letters, 2007, 7(7): 1947–1952.

    [26] C. L. Haynes and R. P. Van Duyne, “Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography,” Nano Letters, 2003, 3(7): 939–943.

    [27] G. Kolhatkar, A. Merlen, J. Zhang, C. Dab, G. Q. Wallace, F. Lagugné-Labarthet, et al., “Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography,” Beilstein Journal of Nanotechnology, 2018, 9(1): 1536–1543.

    [28] N. F. Van Hulst, “Nanophotonics: plasmon quantum limit exposed,” Nature Nanotechnology, 2012, 7(12): 775–7.

    [29] S. K. Ghosh, S. Nath, S. Kundu, K. Esumi, and T. Pal, “Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids,” The Journal of Physical Chemistry B, 2004, 108(37): 13963–13971.

    [30] R. Morarescu, H. Shen, R. A. L. Vallée, B. Maes, B. Kolaric, and P. Damman, “Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications,” Journal of Materials Chemistry, 2012, 22(23): 11537–11542.

    [31] C. Dab, R. Thomas, and A. Ruediger, “Modeling of the surface plasmon resonance tunability of silver/gold core–shell nanostructures,” RSC Advances, 2018, 8(35): 19616–19626.

    [32] G. Kolhatkar, J. Plathier, and A. Ruediger, “Nanoscale investigation of materials, chemical reactions, and biological systems by tip enhanced Raman spectroscopy – a review,” Journal of Materials Chemistry C, 2018, 6(6): 1307–1319.

    [33] E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light: Science & Applications, 2014, 3(5): 1–4.

    [34] A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Letters, 2011, 11(10): 4366–4369.

    [35] X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, et al., “Dual-polarity plasmonic metalens for visible light,” Nature Communications, 2012, 3: 1–6.

    [36] H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedecine, 2006, 1(2): 201–208.

    [37] A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nature Nanotechnology, 2009, 4(11): 710–711.

    [38] L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proceedings of the National Academy of Sciences, 2006, 103(36): 13300–13303.

    [39] J. P. Camden, J. A. Dieringer, J. Zhao, R. P. Van Duyne, and R. P. V. A. N. Duyne, “Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing,” Accounts of Chemical Research, 2008, 41(12): 1653–1661.

    [40] Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Letters, 2007, 7(3): 690–696.

    [41] F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, et al., “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy,” Nano Letters, 2011, 11(6): 2538–2542.

    Chahinez DAB, Reji THOMAS, Andreas RUEDIGER. Design of a Plasmonic Platform to Improve the SERS Sensitivity for Molecular Detection[J]. Photonic Sensors, 2020, 10(3): 204
    Download Citation