• Journal of Infrared and Millimeter Waves
  • Vol. 29, Issue 4, 264 (2010)
DUAN Guo-Yu1, SONG Si-Chao2, WEI Chang-Dong2, WANG Song-You2、*, and JIA Yu3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    DUAN Guo-Yu, SONG Si-Chao, WEI Chang-Dong, WANG Song-You, JIA Yu. ELECTRONIC STRUCTURE AND OPTICAL PROPERTIES OF HfxTi1-xO2 CALCULATED FROM FIRST PRINCIPLES[J]. Journal of Infrared and Millimeter Waves, 2010, 29(4): 264 Copy Citation Text show less
    References

    [1] Kingon A I, Maria J P, Streiffer S K. Alternative dielectrics to silicon dioxide for memory and logic devices[J]. Nature,2000,406(6799):1032-1038.

    [2] Dalapati G K, Chatterjee S, Samanta S K, et al. Electrical characterization of low temperature deposited TiO2 films on strained-SiGe layers[J]. Appl. Surf. Sci.,2003,210(3-4):249-254.

    [3] Fang Q, Zhang J Y, Wang Z M, et al. Investigation of TiO2-doped HfO2 thin films deposited by photo-CVD[J]. Thin Solid Films,2003,428(1-2):263-268.

    [4] Han D D, Kang J F, Lin C H, et al. Reliability characteristics of high-K gate dielectrics HfO2 in metal-oxide semiconductor capacitors[J]. Microelectron Eng.,2003,66(1-4):643-647.

    [5] Shao Q Y, Li A D, Dong Y, et al. Chemical vapor deposition of ZrxTi1-xO2 and HfxTi1-xO2 thin films using the composite anhydrous nitrate precursors[J]. Appl. Surf. Sci.,2008,254(8):2224-2228.

    [6] Triyoso D H, Hegde R I, Zollner S, et al. Impact of titanium addition on film characteristics of HfO2 gate dielectrics deposited by atomic layer deposition[J]. J.Appl. Phys.,2005,98(5):054104-1-8.

    [7] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. Phys.: Condens. Matter,2002,14(11):2717-2744.

    [8] Kohanoff J, Gidopoulos N I. Handbook of molecular physics and quantum chemistry[M]. John Wiley & Sons, 2003 Chapter 26.

    [9] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B,1990,41(11):7892-7895.

    [10] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett.,1996,77:3865-3868.

    [11] Fischer T H, Almlof J. General methods for geometry and wave function optimization[J]. J. Phys. Chem.,1992,96(24):9768-9774.

    [12] Mattesini M, de Almeida J S, Dubrovinsky L, et al. High-pressure and high-temperature synthesis of the cubic TiO2 polymorph[J]. Phys. Rev. B,2004,70(21):212101-1-4.

    [13] Pascual J, Camassel J, Mathieu H. Resolved quadrupolar transition in TiO2[J]. Phys. Rev. Lett.,1977,39(23):1490-1493.

    [14] Mallia G, Harrison N M P. Magnetic moment and coupling mechanism of iron-doped rutile TiO2 from first principles[J]. Phys. Rev. B,2007,75(16):165201-1-11.

    [15] Asahi R, Taga Y, Mannstadt W, et al. Electronic and optical properties of anatase TiO2[J]. Phys. Rev. B,2000,61(11):7459-7465.

    [16] Li M, Zhang Z, Campbell S A, et al. Electrical and material characterizations of high-permittivity HfxTi1-xO2 gate insulators Source[J]. J. Appl. Phys.,2005,98(5):054506-1-8.

    DUAN Guo-Yu, SONG Si-Chao, WEI Chang-Dong, WANG Song-You, JIA Yu. ELECTRONIC STRUCTURE AND OPTICAL PROPERTIES OF HfxTi1-xO2 CALCULATED FROM FIRST PRINCIPLES[J]. Journal of Infrared and Millimeter Waves, 2010, 29(4): 264
    Download Citation