• Chinese Physics B
  • Vol. 29, Issue 9, (2020)
Ruo-Lin Chai1, Qiong-Tao Xie1,†, and Xiao-Liang Liu2
Author Affiliations
  • 1College of Physics and Electronic Engineering, Hainan Normal University, Haikou 5758, China
  • 2School of Physics and Electronics, Central South University, Changsha 410083, China
  • show less
    DOI: 10.1088/1674-1056/ab928f Cite this Article
    Ruo-Lin Chai, Qiong-Tao Xie, Xiao-Liang Liu. Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials[J]. Chinese Physics B, 2020, 29(9): Copy Citation Text show less

    Abstract

    The scattering states in one-dimensional Hermitian and non-Hermitian potentials are investigated. An analytical solution for the scattering states is presented in terms of Heun functions. It is shown that for some specially chosen parameter conditions, an infinite number of the exact scattering states is obtained. In the Hermitian potentials, they correspond to the reflectionless states. In the non-Hermitian complex potentials with parity-time symmetry, they are the unidirectionally reflectionless states.
    d2dx2ψ(x)+V(x)ψ(x)=Eψ(x),(1)

    View in Article

    V(x)=V1g+coshx+V2(g+coshx)2+V3sinhx(g+coshx)2.(2)

    View in Article

    z=exexr1,ψ(x)=zλ1x(z1)λ2(za)λ3ϕ(z),(3)

    View in Article

    d2ϕdz2+(γz+δz1+εza)dϕdz+αβzqz(z1)(za)ϕ=0,(4)

    View in Article

    ϕ1(z)=Hl(a,q;α,β,γ,δ;z),(5)

    View in Article

    ϕ2(z)=z1γHl(a,q+(ε+δa)(1γ);αγ+1,βγ+1,2γ,δ;z).(6)

    View in Article

    ψ1(x)=zλ1(z1)λ2(za)λ3Hl(a,q;α,β,γ,δ;z),(7)

    View in Article

    ψ2(x)=zλ1(z1)λ2(za)λ3×Hl(a,q+(ε+δa)(1γ);αγ+1,βγ+1,2γ,δ;z).(8)

    View in Article

    ψs(x)=Azλ1(z1)λ2(za)λ3Hl(a,q;α,β,γ,δ;z),(9)

    View in Article

    y=r1exr1,ψ(x)=yλ1(y1)λ2(ya1)λ3ϕ(y),(10)

    View in Article

    d2ϕdy2+(γ1y+δ1y1+ε1ya1)dϕdy+α1β1yq1y(y1)(ya1)ϕ=0,(11)

    View in Article

    ϕ3(y)=Hl(a1,q1;α1,β1,γ1,δ1;y),(12)

    View in Article

    ϕ4(y)=y1γ1Hl(a1,q1+(ε1+δ1a1)(1γ1);α1γ1+1,β1γ1+1,2γ1,δ1;y),(13)

    View in Article

    ψ3(x)=yλ1(y1)λ2(ya1)λ3×Hl(a1,q1;α1,β1,γ1,δ1;y),(14)

    View in Article

    ψ4(x)=yλ1(y1)λ2(ya1)λ3×Hl(a1,q1+(ε1+δ1a1)(1γ1);α1γ1+1,β1γ1+1,2γ1,δ1;y).(15)

    View in Article

    ψs(x)=A(C1ψ3(x)+C2ψ4(x)),(16)

    View in Article

    ψ1(x)=C1ψ3(x)+C2ψ4(x).(17)

    View in Article

    C1=W(ψ1,ψ4)W(ψ3,ψ4),C2=W(ψ1,ψ3)W(ψ3,ψ4).(18)

    View in Article

    ψ3(x)=(r1)λ1(1)λ2(a1)λ3eikx,(19)

    View in Article

    ψ4(x)=(r1)λ1(1)λ2(a1)λ3eikx.(20)

    View in Article

    ψs(x)=A(C1ψ3(x)+C2ψ4(x))=eikx+reikx,(21)

    View in Article

    r=r12λ1C2C1,t=aλ3a1λ3C1.(22)

    View in Article

    α,β=N,N=0,1,2,,(23)

    View in Article

    hN+1=0,(24)

    View in Article

    V2=N2(N2+1)(1g2)+V32(N+1)2,(25)

    View in Article

    ψsN(x)=eikx(exr1)N(exr2)Nn=0Nhn(EexN)enxr1n,(26)

    View in Article

    Eex1=k2=14(2V1+g)21g21.(27)

    View in Article

    ψs1(x)=eikx(exr1)(exr2)×(1+(g+2V112i|k|)ex).(28)

    View in Article

    V(x)=Vr(x)+iVi(x)=V1g+coshx+V2(g+coshx)2+iV3sinhx(g+coshx)2.(29)

    View in Article

    ψ(x)=eikx(exr2exr1)A.(30)

    View in Article

    ψ(x)=eikx(ex+iexi)A×(1+2F(1,2ik,12ik,iex)).(31)

    View in Article

    ψ(x)=eikxei2A1+ex.(32)

    View in Article

    Ruo-Lin Chai, Qiong-Tao Xie, Xiao-Liang Liu. Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials[J]. Chinese Physics B, 2020, 29(9):
    Download Citation