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The scattering states in one-dimensional Hermitian and non-Hermitian potentials are investigated. An analytical so-
lution for the scattering states is presented in terms of Heun functions. It is shown that for some specially chosen parameter
conditions, an infinite number of the exact scattering states is obtained. In the Hermitian potentials, they correspond to
the reflectionless states. In the non-Hermitian complex potentials with parity-time symmetry, they are the unidirectionally
reflectionless states.

Keywords: exact solutions, scattering states, non-Hermitian potential

PACS: 03.65.Nk, 02.30.Gp, 42.82.Et DOI: 10.1088/1674-1056/ab928f

1. Introduction
In the past decades, the concept of reflectionless states has

attracted extensive interest of research. On the one hand, sev-
eral reflectionless potentials have been realized in engineered
photonic lattices.[1–5] In the engineered photonic lattices, the
temporal evolution of quantum systems can be mapped into
the spatial propagation of light waves. These optical structures
provide a controllable platform for studying the properties of
the scattering states. By suitably modulating the coupling be-
tween the waveguides, reflectionless characteristics and super-
symmetric scattering have been observed experimentally.[1,2]

On the other hand, the concept of the reflectionless states
has found wide applications in non-Hermitian systems with
parity–time (PT) symmetry.[6–11] It has been shown that these
non-Hermitian systems exhibit a rich variety of unique scat-
tering properties without Hermitian counterparts.[12–15] Many
interesting phenomena have been observed in different non-
Hermitian systems, such as nonreciprocal light transmission
in microcavities,[16] unidirectional reflectionlessness in optical
metamaterials,[17] and coherent perfect absorption in coupled
resonators.[18]

In the present work, our main aim is to investigate the
scattering states in a type of one-dimensional potential and
its non-Hermitian extension. We present the analytical solu-
tion for the scattering states in terms of Heun functions. It is
found that for specially chosen parameter conditions, there ex-
ist an infinite number of the exact analytical solutions for the
scattering states. In the Hermitian situation, the exact scatting
states have zero reflection coefficients. In the non-Hermitian
extension, we give an analytical demonstration for the unidi-
rectional reflectionlessness.

2. Exact scattering states in a Hermitian poten-
tial
We begin with the following Schrödinger equation (2m =

h̄ = 1)

− d2

dx2 ψ(x)+V (x)ψ(x) = Eψ(x), (1)

where the potential V (x) is given as

V (x) =
V1

g+ coshx
+

V2

(g+ coshx)2 +
V3 sinhx

(g+ coshx)2 . (2)

Here V1,2,3 and g > −1 are real potential parameters. In the
case of V1 = V3 = g = 0, the resulting potential is the well-
known sech-squared potential which allows the exact solu-
tions for the reflectionless states for V2 = −n(n+ 1) with in-
teger n > 0.[19] This reflectionless sech-squared potential has
been realized in engineered photonic systems.[1,2] In the case
of g < 0 and V1 = V3 = 0, an exact transmission state was
found in a Bose–Einstein condensate which is described by
a nonlinear Schrödinger equation.[20] In the case of V3 = 0,
the resulting potential is a double-well potential under cer-
tain parameter conditions, and exact bound states have been
presented.[21–24] Thus this potential (2) can be used to study
various double-well systems, and find applications in systems
of Bose–Einstein condensates. In this work, we mainly dis-
cuss the scattering states.

To solve the Schrödinger equation (1), we make the trans-
formations

z =
e−x

e−x− r1
, ψ(x) = zλ1x(z−1)λ2(z−a)λ3φ(z), (3)

with r1 =
√

g2−1 − g, a = r2/(r2 − r1), r2 =

−
√

g2−1 − g, λ1 = −λ2 = −
√
−E, and λ3 = 1/2 −
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1+4V2/(g2−1)+4V3/

√
g2−1/2. After a simple cal-

culation, it is found that φ(z) obeys the Heun equation[25,26]

d2
φ

dz2 +

(
γ

z
+

δ

z−1
+

ε

z−a

)
dφ

dz
+

αβ z−q
z(z−1)(z−a)

φ = 0, (4)

where γ = 1+2λ1, δ = 1+2λ2, α = λ3+λ4, β = 1+λ3−λ4,

λ4 = 1/2−
√

1+4V2/(g2−1)−4V3/
√

g2−1/2, ε = α +

β − δ − γ + 1 = 2λ3, and q = (V1 +V3)/
√

g2−1 + (1 +

2λ1)λ3. Mathematically, if γ = 1− 2
√
−E is not an integer,

the Heun equation will have two linearly independent solu-
tions near z = 0.[25,26] For the scattering states with E > 0,
γ = 1− 2

√
−E is complex, thus we obtain the two linearly

independent solutions φ1,2(x) as follows:

φ1(z) = Hl(a,q;α,β ,γ,δ ;z), (5)

φ2(z) = z1−γ Hl(a,q+(ε +δa)(1− γ);

α− γ +1,β − γ +1,2− γ,δ ;z). (6)

Here Hl(a,q;α,β ,γ,δ ;z) = ∑
∞
n=0 hnzn is an infinite series

known as the Heun function. The coefficients hn are de-
termined by the three-term recurrence relation: Rn−1hn−1 +

Pnhn +Qn+1hn+1 = 0 with the initial conditions h0 = 1 and
h−1 = 0. Here Rn = (n + α)(n + β ), Pn = −q− n(n− 1 +

γ)(1+a)−n(aδ +ε), and Qn = an(n−1+γ). In terms of the
Heun functions, the analytical solutions for this potential are
given as

ψ1(x) = zλ1(z−1)λ2(z−a)λ3Hl(a,q;α,β ,γ,δ ;z), (7)

ψ2(x) = z−λ1(z−1)λ2(z−a)λ3

×Hl(a,q+(ε +δa)(1− γ);

α− γ +1,β − γ +1,2− γ,δ ;z). (8)

To discuss the scattering states with the energy E = k2 > 0,
we need to discuss the asymptotic behavior of ψ1,2(x). As
x → ∞, one has z = e−x/(e−x − r1) → 0, thus ψ1(x) =

(−a)λ3/(r1)
λ1 e ikx and ψ2(x) = (r1)

λ1(−a)λ3 e−ikx. We as-
sume that a particle is incident from the left of the potential,
thus ψ1(x) is used to construct the analytical solution for the
scattering states

ψs(x) = Azλ1(z−1)λ2(z−a)λ3Hl(a,q;α,β ,γ,δ ;z), (9)

where A is a constant to be determined. In order to ob-
tain the transmission and reflection coefficients, we need to
know the asymptotic behavior of ψs(x) as x → −∞. How-
ever, this cannot be obtained easily. The reason is given as
follows. The Heun function Hl(a,q;α,β ,γ,δ ;z) is only an-
alytical in the range of |z| < min{a,1}. As x → −∞, we
have z = e−x/(e−x−r1)→ 1. Hl(a,q;α,β ,γ,δ ;1) is thus not
analytical.[25,26] This problem can be solved by constructing
the solutions with good asymptotic behavior as x→ −∞.[21]

To discuss the asymptotic behavior as x→−∞, we may make
different transformations

y =
−r1

e−x− r1
, ψ(x) = y−λ1(y−1)−λ2(y−a1)

λ3φ(y), (10)

with a1 = r1/(r1− r2), and then obtain the Heun equation for
φ(y) as follows:[25,26]

d2
φ

dy2 +

(
γ1

y
+

δ1

y−1
+

ε1

y−a1

)
dφ

dy
+

α1β1y−q1

y(y−1)(y−a1)
φ = 0, (11)

where γ1 = 1− 2λ1, δ1 = −2λ2 + 1, ε1 = 2λ3, α1 = 2λ3,
β1 = 1, and q1 = −V2/

√
g2−1+(1− 2λ1)λ3. For the scat-

tering states with E > 0, γ1 = 1 + 2
√
−E is not an integer,

and thus the Heun equation supports two linearly independent
solutions φ3,4(x) as follows:

φ3(y) = Hl(a1,q1;α1,β1,γ1,δ1;y), (12)

φ4(y) = y1−γ1Hl(a1,q1 +(ε1 +δ1a1)(1− γ1);

α1− γ1 +1,β1− γ1 +1,2− γ1,δ1;y), (13)

which leads to the analytical solutions

ψ3(x) = y−λ1(y−1)−λ2(y−a1)
λ3

×Hl(a1,q1;α1,β1,γ1,δ1;y), (14)

ψ4(x) = yλ1(y−1)−λ2(y−a1)
λ3

×Hl(a1,q1 +(ε1 +δ1a1)(1− γ1);

α1− γ1 +1,β1− γ1 +1,2− γ1,δ1;y). (15)

In terms of the analytical solutions ψ3,4, the analytical solution
for the scattering states is given as

ψs(x) = A(C1ψ3(x)+C2ψ4(x)), (16)

where the coefficients C1,2 are constants to be determined.
Clearly, in the common valid regions of ψ1,3,4, we have

ψ1(x) =C1ψ3(x)+C2ψ4(x). (17)

This leads to the explicit expressions for the coefficients C1,2,

C1 =
W (ψ1,ψ4)

W (ψ3,ψ4)
, C2 =−

W (ψ1,ψ3)

W (ψ3,ψ4)
. (18)

Here W (φ ,ϕ) = φ(x)dϕ(x)/dx−ϕ(x)dφ(x)/dx is the Wron-
skian of two functions φ(x) and ϕ(x). As x→−∞, we have
the asymptotic behavior

ψ3(x) = (−r1)
−λ1(−1)−λ2(−a1)

λ3 e ikx, (19)

ψ4(x) = (−r1)
λ1(−1)−λ2(−a1)

λ3 e−ikx. (20)

If we set A = 1/(C1(−r1)
−λ1(−1)−λ2(−a1)

λ3), we have

ψs(x) = A(C1ψ3(x)+C2ψ4(x)) = e ikx + r e−ikx, (21)

thereby resulting in the reflection and transmission coefficients

r =
r2λ1

1 C2

C1
, t =

aλ3

aλ3
1 C1

. (22)
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Therefore, the reflection and transmission coefficients are re-
lated to the Wronskians of the three analytical solutions ψ1,3,4.

Besides the analytical solutions in terms of the Heun
functions, there exist exact analytical solutions in terms of el-
ementary functions, as studied in the following. It has been
shown that for certain special conditions of

α,β =−N, N = 0,1,2, . . . , (23)

hN+1 = 0, (24)

the Heun function Hl(a,q;α,β ,γ,δ ;z) can be terminated as a
polynomial in z.[25,26] These terminated conditions allow us to
obtain an infinite number of exact analytical solutions. From
the condition α = λ3 +λ4 =−N in ψs(x), we have the param-
eter relation

V2 =−
N
2

(
N
2
+1
)
(1−g2)+

V 2
3

(N +1)2 , (25)

with N ≥ 1. To give a simple form of the exact solu-
tions, we first use the relation Hl(a,q;α,β ,γ,δ ;z) = (1−
z)−α Hl(a/(a−1),(γαa−q)/(a−1);α,α−δ +1,γ,α−β +

1;z/(z−1)) in ψs(x),[26] and then set A = 1. Finally, the exact
analytical solutions for the scattering states are given as

ψ
N
s (x) =

e ikx√
(e−x− r1)N(e−x− r2)N

N

∑
n=0

hn(EN
ex)

e−nx

rn
1

, (26)

where the exact energies EN
ex are determined by hN+1 = 0. We

now discuss the asymptotic behavior of ψN
s (x) as x→ ±∞.

After a simple analysis, we have ψN
s (x) = e ikx as x→ ∞, and

ψN
s (x) = (hN/rN

1 )e ikx as x→−∞. These results indicate that
the exact analytical solutions ψN

s (x) correspond to the scatter-
ing states with the zero reflection coefficient. In the following,
we present the exact results in the case of N = 1 as an example.

To give a simple explicit expression, we consider the case
of V3 = 0. Under the condition h1 = 0, we obtain the simple
parametric dependence of the exact energy

E1
ex = k2 =−1

4
(2V1 +g)2−1

g2−1
. (27)

It is valid for g > −1 and g 6= 1. Depending on the param-
eter value of g, we have different parameter regions for V1,
−(1+g)/2 <V1 < (1−g)/2 for g > 1, and V1 > (1−g)/2 or
V1 <−(1+g)/2 for−1< g< 1. The corresponding scattering
state takes the form

ψ
1
s (x) =

e ikx√
(e−x− r1)(e−x− r2)

×
(

1+
(

g+
2V1

1−2i|k|

)
e−x
)
. (28)

It follows that we have ψ1
s (x) = e ikx as x→ ∞, and ψ1

s (x) =
(g + 2V1

1−2i|k| )e ikx as x → −∞. We can verify the result of

|(g+ 2V1
1−2i|k| )| = 1 easily. Therefore, the solution ψ1

s (x) rep-
resents the reflectionless state.
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Fig. 1. Profiles of the potential V (x) for (a) V1 = −1.8, (b) V1 = −1.5,
(c) V1 = −1.2 with g = 3, V2 = 6, and V3 = 0. In the right column, we
plot the corresponding numerical results for the transmission probabil-
ities T as a function of the incident energies E. The circles are for the
exact results T = 1 at E = E1
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Fig. 2. Profiles of the potential V (x) for (a) V1 = −0.8, (b) V1 = 0.6,
(c) V1 = 0.75, and (d) V1 = 1.6 with g = V3 = 0 and V2 = −3/4. The
corresponding transmission probabilities as a function of the incident
energies E are plotted in the right column. The circles are for the exact
results T = 1 at E = E1

ex.

In Fig. 1, we show the profiles of V (x) for this case of
N = 1. We set g = 3, and then have the parameter range of V1,
−2 <V1 <−1. In this parameter region, we take three differ-
ent values of V1, V1 =−1.8,−1.5,−1.2. It is observed that the
resulting potentials show double-well structures. In the right
column of Fig. 1, we plot the numerical results for the trans-
mission probabilities as a function of the incident energies E.
The circles are for the exact results T = 1 at E = E1

ex. It is
observed that as the incident energies E are increased from
E = 0 to E1

ex, the transmission probabilities are increased from
T = 0 to T = 1. The analytical and numerical results agree
very well. If the incident energies E are increased from E1

ex,
the transmission probabilities are first decreased, and then in-
creased. In Fig. 2, we study the case of g = V3 = 0. For
such chosen parameter values, we have V2 = −3/4. The re-
sulting exact reflectionless states exist in the parameter range
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of V1 < −1/2 or V1 > 1/2. For V1 < −1/2, the resulting po-
tentials have single-well structures, as shown in Fig. 2(a). In
the range of V1 > 1/2, as V1 is increased gradually, the result-
ing potentials change from double barrier to single barrier, as
shown in Figs. 2(b)–2(d). Therefore, we also obtain the exact
reflectionless states in the single or double barrier structures.

3. Exact scattering states in a complex potential
In this section, we study the case where the potential pa-

rameter V3 is replaced by an imaginary parameter iV3. The
resulting one-dimensional PT symmetric complex potential is
given as

V (x) = Vr(x)+ iVi(x)

=
V1

g+ coshx
+

V2

(g+ coshx)2

+
iV3 sinhx

(g+ coshx)2 . (29)

Here V3 are real potential parameter. Vr(x) =V1/(g+coshx)+
V2/(g+coshx)2 and Vi(x)=V3 sinhx/(g+coshx)2 are the real
and imaginary parts of the complex potential. In general, the
complex potential provides an effective description for open
quantum systems. In atomic systems, the complex poten-
tial may emerge from the interaction of near resonant light
with open atomic systems.[27] In classical photonic systems,
the complex potential may arise due to the complex index of
refraction.[28] The case of g = V1 = 0 corresponds to the PT
symmetric Scarf II potential which is exactly solvable.[12–14]

In the following, we shall show that there exist exact scatter-
ing states in this modified complex Scarf II potential.

For brevity, we discuss the specific case of V1 =

−2kA
√

1−g2, V2 = A2(g2−1), and V3 =−A
√

1−g2, where
A is a real parameter. With this choice of V1,2,3, we take
λ3 =−λ4 = A, thus α = 0. Due to α = 0, the termination con-
dition (23) is satisfied. From the condition h1 = 0 in φ1(z), we
obtain the energy E = k2, and thus the corresponding eigen-
function

ψ(x) = e ikx
(

e−x− r2

e−x− r1

)A

. (30)

After analyzing asymptotic behavior of ψ(x), we have ψ(x) =
e ikx as x→−∞, and ψ(x) = (r2/r1)

A e ikx as x→∞. It is seen
clearly that the reflection probability R = 0. Therefore, the
obtained eigenfunction represents the reflectionless state.

On the other hand, with α = 0 and E = k2, the Heun func-
tion in φ2(z) cannot be terminated as a polynomial. However,
it is found that for g= 0 and A= n/2 with integer n, φ2(z) may
be related to a hypergeometric function. For example, for the
choice of A = 1/2 and g = 0, we obtain the eigenfunction of
the form

ψ(x) = e−ikx
(

e−x + i
e−x− i

)A

×(−1+2F(1,−2ik,1−2ik,−i ex)). (31)

Here F(α,β ,γ,z) is the hypergeometric function.[26] From
the asymptotic behavior for the hypergeometric function,[26]

it follows that as x → −∞, ψ(x) = −e−ikx, and as x → ∞,
ψ(x) = −i e−ikx + i(2(i)2ikπk/sinh(2πk))e ikx. In this situ-
ation, the reflection probability R = 4π2k2/sinh2(2πk) is not
zero. Therefore, our exact results reveal that with the same
incident energy E = k2, the reflection probability is sensitive
to the direction of incidence. If a particle is incident from the
left, its reflection probability is zero, and if it is incident from
the right, its reflection probability is nonzero. This phenomena
is called the unidirectional reflectionlessness which has been
observed experimentally.[17] In Fig. 3, we show the profiles of
Vr,i(x) for four different values of k with A = 2 and g = 0. It
is observed that as k is increased, Vr(x) is changed from the
barrier to the well.
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Fig. 3. Profiles of the real (solid lines) and imaginary (dashed lines)
parts of the generalized PT symmetric Scarf II potential for (a) k =−2,
(b) k =−1, (c) k =−0.5, and (d) k = 0.5. The potential parameters are
given as V1 =−2kA, V2 =−A2, and V3 =−A with A = 2 and g = 0.

Finally, we discuss the case of g = 1 where the above ex-
act analytical results are invalid. In fact, in the case of g = 1,
we have r1 = r2 = −1 and thus a→ ∞. The confluent Heun
equation is obtained from the Heun equation through a conflu-
ence process.[25,26] The analytical solutions are then given by
the confluent Heun functions. This will be discussed in detail
in future. In the case of g = 1, we also obtain the exact scatter-
ing states. An example is given as follows. Here for brevity,
we take V1 =−2kA, V2 =−A2, and V3 =−A, where A is a real
parameter. We obtain an exact scattering state

ψ(x) = e ikx e i 2A
1+ex . (32)

This result indicates that as a particle is incident from the left-
hand side of this complex potential, its reflection probability is
zero. However, for the same parameter conditions, we cannot
obtain the exact scattering states incident from the right-hand
side of this complex potential.
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4. Conclusions
In summary, we have presented an analytical solution for

the scattering states in a type of one-dimensional potential in
terms of Heun functions. The parameter conditions for the ex-
istence of the exact scattering states are derived analytically
and confirmed numerically. In the Hermitian situation, it is
shown that the obtained exact scattering states correspond to
the reflectionless states. Depending on the chosen parame-
ters, the potential may vary from the double well to the single
well, the single barrier, and the double barrier. The exact re-
flectionless states also appear in these structures. In addition,
we obtain some exact unidirectionally reflectionless states in
a generalized PT-symmetric non-Hermitian Scarf II potential.
Our analytical results may find applications in engineered pho-
tonic lattices.
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