• Journal of Semiconductors
  • Vol. 44, Issue 1, 011902 (2023)
Zhenyao Li1、2, Jia-Min Lai1、2、*, and Jun Zhang1、2、3、**
Author Affiliations
  • 1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/44/1/011902 Cite this Article
    Zhenyao Li, Jia-Min Lai, Jun Zhang. Review of phonons in moiré superlattices[J]. Journal of Semiconductors, 2023, 44(1): 011902 Copy Citation Text show less
    References

    [2] K Kobayashi. Moiré pattern in scanning tunneling microscopy: Mechanism in observation of subsurface nanostructures. Phys Rev B, 53, 11091(1996).

    [3] A T N'Diaye, S Bleikamp, P J Feibelman et al. Two-dimensional Ir cluster lattice on a graphene moiré on Ir(111). Phys Rev Lett, 97, 215501(2006).

    [4] Y Liu, N O Weiss, X D Duan et al. Van der Waals heterostructures and devices. Nat Rev Mater, 1, 16042(2016).

    [5] J M B Lopes Dos Santos, N M R Peres, A H Castro Neto. Graphene bilayer with a twist: Electronic structure. Phys Rev Lett, 99, 256802(2007).

    [6] R Bistritzer, A H MacDonald. Moire bands in twisted double-layer graphene. Proc Natl Acad Sci USA, 108, 12233(2011).

    [7] Y Cao, V Fatemi, S A Fang et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43(2018).

    [8] D Huang, J Choi, C K Shih et al. Excitons in semiconductor moiré superlattices. Nat Nanotechnol, 17, 227(2022).

    [9] D Schmitt, J P Bange, W Bennecke et al. Formation of moiré interlayer excitons in space and time. Nature, 608, 499(2022).

    [10] K Tran, G Moody, F C Wu et al. Evidence for moiré excitons in van der waals heterostructures. Nature, 567, 71(2019).

    [11] C H Jin, E C Regan, A M Yan et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 567, 76(2019).

    [12] J A Yan, W Y Ruan, M Y Chou. Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory. Phys Rev B, 77, 125401(2008).

    [13] D L Nika, A A Balandin. Phonons and thermal transport in graphene and graphene-based materials. Rep Prog Phys Phys Soc G B, 80, 036502(2017).

    [14] R Ribeiro-Palau, C J Zhang, K Watanabe et al. Twistable electronics with dynamically rotatable heterostructures. Science, 361, 690(2018).

    [15] Y W Choi, H J Choi. Strong electron-phonon coupling, electron-hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene. Phys Rev B, 98, 241412(2018).

    [16] J W Jiang, B S Wang, T Rabczuk. Acoustic and breathing phonon modes in bilayer graphene with Moiré patterns. Appl Phys Lett, 101, 023113(2012).

    [17] A I Cocemasov, D L Nika, A A Balandin. Phonons in twisted bilayer graphene. Phys Rev B, 88, 12(2013).

    [18] M Angeli, E Tosatti, M Fabrizio. Valley jahn-teller effect in twisted bilayer graphene. Phys Rev X, 9, 041010(2019).

    [19] M L Lin, Q H Tan, J B Wu et al. Moiré phonons in twisted bilayer MoS2. ACS Nano, 12, 8770(2018).

    [20] M Koshino, Y W Son. Moiré phonons in twisted bilayer graphene. Phys Rev B, 100, 075416(2019).

    [21] J M Quan, L Linhart, M L Lin et al. Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat Mater, 20, 1100(2021).

    [22] F C Wu, A H MacDonald, I Martin. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys Rev Lett, 121, 257001(2018).

    [23] T G Wang, N F Q Yuan, L Fu. Moiré surface states and enhanced superconductivity in topological insulators. Phys Rev X, 11, 021024(2021).

    [24] Y W Choi, H J Choi. Dichotomy of electron-phonon coupling in graphene moiré flat bands. Phys Rev Lett, 127, 167001(2021).

    [25] S Han, X H Nie, S Z Gu et al. Twist-angle-dependent thermal conduction in single-crystalline bilayer graphene. Appl Phys Lett, 118, 193104(2021).

    [26] P S Mahapatra, B Ghawri, M Garg et al. Misorientation-controlled cross-plane thermoelectricity in twisted bilayer graphene. Phys Rev Lett, 125, 226802(2020).

    [28] J Jung, A Raoux, Z H Qiao et al. Ab initiotheory of moiré superlattice bands in layered two-dimensional materials. Phys Rev B, 89, 205414(2014).

    [29] P San-Jose, A Gutiérrez-Rubio, M Sturla et al. Spontaneous strains and gap in graphene on boron nitride. Phys Rev B, 90, 075428(2014).

    [30] M Koshino, N N T Nam. Effective continuum model for relaxed twisted bilayer graphene and moiré electron-phonon interaction. Phys Rev B, 101, 195425(2020).

    [31] J M Lai, M U Farooq, Y J Sun et al. Multiphonon process in Mn-doped ZnO nanowires. Nano Lett, 22, 5385(2022).

    [32] H Ishizuka, A Fahimniya, F Guinea et al. Purcell-like enhancement of electron-phonon interactions in long-period superlattices: Linear-temperature resistivity and cooling power. Nano Lett, 21, 7465(2021).

    [33] Z X Sun, Y H Hu. How magical is magic-angle graphene. Matter, 2, 1106(2020).

    [34] P H Tan. Signatures of moiré excitons. J Semicond, 40, 040202(2019).

    [35] K Shinokita, Y Miyauchi, K Watanabe et al. Resonant coupling of a moiré exciton to a phonon in a WSe2/MoSe2 heterobilayer. Nano Lett, 21, 5938(2021).

    [36] P S Mahapatra, K Sarkar, H R Krishnamurthy et al. Seebeck coefficient of a single van der waals junction in twisted bilayer graphene. Nano Lett, 17, 6822(2017).

    [37] S Duan, Y Cui, W Yi et al. Enhanced thermoelectric performance in black phosphorene via tunable interlayer twist. Small, 2204197(2022).

    [38] T J Peltonen, R Ojajärvi, T T Heikkilä. Mean-field theory for superconductivity in twisted bilayer graphene. Phys Rev B, 98, 220504(2018).

    [39] B Lian, Z J Wang, B A Bernevig. Twisted bilayer graphene: A phonon-driven superconductor. Phys Rev Lett, 122, 257002(2019).

    [40] Y Cao, V Fatemi, A Demir et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80(2018).

    [41] C K Xu, L Balents. Topological superconductivity in twisted multilayer graphene. Phys Rev Lett, 121, 087001(2018).

    [42] N F Q Yuan, L Fu. Model for the metal-insulator transition in graphene superlattices and beyond. Phys Rev B, 98, 045103(2018).

    [43] J Kang, O Vafek. Symmetry, maximally localized wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys Rev X, 8, 031088(2018).

    [44] N Witt, J M Pizarro, J Berges et al. Doping fingerprints of spin and lattice fluctuations in moiré superlattice systems. Phys Rev B, 105, L241109(2022).

    [45] M V Sadovskii. Antiadiabatic phonons, coulomb pseudopotential, and superconductivity in eliashberg—McMillan theory. Jetp Lett, 109, 166(2019).

    [46] Z Y Hao, A M Zimmerman, P Ledwith et al. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 371, 1133(2021).

    [47] J M Park, Y Cao, K Watanabe et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 590, 249(2021).

    [48] X Cong, M L Lin, P H Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J Semicond, 40, 091001(2019).

    [49] Z Q Zhou, Y Cui, P H Tan et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 40, 061001(2019).

    Zhenyao Li, Jia-Min Lai, Jun Zhang. Review of phonons in moiré superlattices[J]. Journal of Semiconductors, 2023, 44(1): 011902
    Download Citation