• Journal of Infrared and Millimeter Waves
  • Vol. 38, Issue 1, 3 (2019)
ZHANG Tian-Ning1、2、*, WANG Shu-Xia1, HUANG Tian-Tian1, WEI Wei1, CHEN Xin1、2, and DAI Ning1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2019.01.001 Cite this Article
    ZHANG Tian-Ning, WANG Shu-Xia, HUANG Tian-Tian, WEI Wei, CHEN Xin, DAI Ning. Atomic-Layer-Deposited ultrathin films of vanadium pentoxide crystalline nanoflakes with controllable thickness and optical band-gap[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 3 Copy Citation Text show less
    References

    [1] Haque F, Daeneke T, Kalantar-zadeh K, et al. Two-dimensional transition metal oxide and chalcogenide-Based photocatalysts[J]. Nano-Micro Letters, 2018, 10(2): 23-27.

    [2] Granqvist C G, Arvizu M A, Bayrak Pehlivan I·, et al. Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review[J]. Electrochimica Acta, 2018, 259: 1170-1182.

    [3] Varghese S S, Varghese S H, Swaminathan S, et al. Two-dimensional materials for sensing: graphene and beyond[J]. Electronics, 2015, 4(3): 651-687.

    [4] Cong L N, Xie H M, Li J H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium btteries[J]. Advanced Energy Materials, 2017, 7(12): 1601906.

    [5] Mei J, Liao T, Kou L Z, et al. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries[J]. Advanced Materials, 2017, 29(48): 1700176.

    [6] Vernardou D. Using an atmospheric pressure chemical vapor deposition process for the development of V2O5 as an electrochromic material[J]. Coatings, 2017, 7(2): 24.

    [7] He W, Liu Y, Wan Z, et al. Electrodeposition of V2O5 on TiO2 nanorod arrays and their electrochromic properties[J]. RSC Advances, 2016, 6(73): 68997-69006.

    [8] Panagopoulou M, Vernardou D, Koudoumas E, et al. Tunable Properties of Mg-doped V2O5 Thin Films for Energy Applications: Li-ion Batteries and Electrochromics[J]. Journal of Physical Chemistry C, 2017, 121(1): 70-79.

    [9] Park H, Kim D S, Hong S Y, et al. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays[J]. Nanoscale, 2017, 9(22): 7631.

    [10] Shanmugam M, Alsalme A, Alghamdi A, et al. Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight[J]. ACS Applied Materials & Interfaces, 2015, 7(27):14905-14911.

    [11] Epifani M, Kaciulis S, Mezzi A, et al. Inorganic photocatalytic enhancement: activated RhB photodegradation by surface modification of SnO2 nanocrystals with V2O5-like species[J]. Scientific Reports, 2017, 7: 46855.

    [12] Liu M S, Su B, Tang Y, et al. Recent advances in nanostructured vanadium oxides and composites for energy conversion[J]. Advanced Energy Materials, 2017, 7(23): 1700885.

    [13] Kumar S, Qadir A, Maury F, et al. Visible thermochromism in vanadium pentoxide coatings[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21447-21456.

    [14] Hu P, Yan M Y, Zhu T, et al. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42717-42722.

    [15] Ma Y N, Huang A B, Zhou H J, et al. Template-free formation of various V2O5 hierarchical structures as cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(14): 6522-6531.

    [16] Xiao F, Song X X, Li Z H, et al. Embedding of Mg-doped V2O5 nanoparticles in a carbon matrix to improve their electrochemical properties for high-energy rechargeable lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5(33): 17432-17441.

    [17] Yue Y, Liang H. Micro-and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(17):1602545.

    [18] Zhang Y F, Wang H W, Yang J, et al. Hydrogenated vanadium oxides as an advanced anode material in lithium ion batteries[J]. Nano Research, 2017, 10(12):4266-4273.

    [19] Mortimer R J. Electrochromic materials[J]. Chemical Society Reviews, 1997, 26(3):147-156.

    [20] Whittingham M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10):4271-4301.

    [21] Rui X H, Lu Z Y, Yu H, et al. Ultrathin V2O5 nanosheet cathodes: realizing ultrafast reversible lithium storage[J]. Nanoscale, 2013, 5(2):556-560.

    [22] Brown E, Acharya J, Pandey G P, et al. Highly stable three lithium insertion in thin V2O5 shells on vertically aligned carbon nanofiber arrays for ultrahigh-capacity lithium ion battery cathodes[J]. Advanced Materials Interfaces, 2016,3(23):1600824.

    [23] Song Y, Liu T Y, Yao B, et al. Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability[J]. Small, 2017, 13(16):1700067.

    [24] Detavernier C, Dendooven J, Sree S P, et al. Tailoring nanoporous materials by atomic layer deposition[J]. Chemical Society Reviews, 2011, 40(11):5242-5253.

    [25] Ostreng E, Nilsen O, Fjellvag H. Optical properties of vanadium pentoxide deposited by ALD[J]. Journal of Physical Chemistry C, 2012, 116(36):19444-19450.

    [26] Chen X Y, Pomerantseva E, Gregorczyk K, et al. Cathodic ALD V2O5 thin films for high-rate electrochemical energy storage[J]. RSC Advances, 2013, 3(13):4294-4302.

    [27] Colton R J, Guzman A M, Rabalais J W. Electrochromism in some thin-film transition‐metal oxides characterized by x‐ray electron spectroscopy[J]. Journal of Applied Physics, 1978, 49(1):409-416.

    [28] Baddour-Hadjean R, Pereira-Ramos J P, Navone C, et al. Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films[J]. Chemistry of Materials, 2008, 20(5): 1916-1923.

    [29] Wachs I E, Jehng J M, Hardcastle F D. The interaction of V2O5 and Nb2O5with oxide[J]. Solid State Ionics, 1989, 32-3: 904-910.

    [30] Ramana C V, Smith R J, Hussain O M, et al. Surface analysis of pulsed laser-deposited V2O5 thin films and their lithium intercalated products studied by Raman spectroscopy[J]. Surface and Interface Analysis, 2005, 37(4): 406-411.

    [31] Sreedhara M B, Ghatak J, Bharath B, et al. Atomic layer deposition of ultrathin crystalline epitaxial films of V2O5[J]. ACS Applied Materials & Interfaces, 2017, 9(3):3178-3185.

    [32] Stranski I N, Krastanow L. Zur theorie der orientierten ausscheidung von Ionenkristallen aufeinander[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1937, 71(1): 351-364.

    ZHANG Tian-Ning, WANG Shu-Xia, HUANG Tian-Tian, WEI Wei, CHEN Xin, DAI Ning. Atomic-Layer-Deposited ultrathin films of vanadium pentoxide crystalline nanoflakes with controllable thickness and optical band-gap[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 3
    Download Citation