• Acta Physica Sinica
  • Vol. 68, Issue 20, 204206-1 (2019)
Yue Zhou1、2, Zhi-Yuan Hu1、2, Da-Wei Bi1、2, and Ai-Min Wu1、2、*
Author Affiliations
  • 1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.7498/aps.68.20190543 Cite this Article
    Yue Zhou, Zhi-Yuan Hu, Da-Wei Bi, Ai-Min Wu. Progress of radiation effects of silicon photonics devices[J]. Acta Physica Sinica, 2019, 68(20): 204206-1 Copy Citation Text show less

    Abstract

    Silicon photonics is a fundamental technology, which has great potential applications in optical interconnection for telecom, datacom, and high performance computers, as well as in bio-photonics. Currently considered are the photonics integrated circuits that are able to work in harsh environments such as high energy equipment and future space systems including satellites, space stations and spacecraft. The understanding of the radiation effects of the photonics devices is critical for fabricating radiation hardened photonic integrate chips and maintaining the performance of the devices and the systems. In this paper, the recent progress of the radiation effects of silicon photonic components is summarized. The effects of the high energy particles that possibly degrade the performance of the device are explained, and the response of the passive and active device under radiation are reviewed comprehensively, including waveguides, ring resonators, modulators, detectors, lasers and optical fibers and so on. For passive devices, radiation-induced effects include accelerated-oxidation of the structures, radiation-generated lattice defects, and amorphous densification or compaction in the optical materials. The effective refractive index of the passive device may change consequently, leading the working frequency to shift, the optical confinement to decrease, and the optical power to leak, which accounts for the extra loss or other performance degradation behaviors. For photodetectors and lasers, radiation-induced displacement damage will be dominant. The induced point defects localized in the silicon layer bring about deep level in the forbidden band, acting as generation-recombination centers or trap centers of tunneling effect, which will compensate for either donor or acceptor levels, degrading the response of these optoelectronic device significantly. The plasma dispersion effect is the mainstream approach to building the silicon electro-optic modulators, which will suffer ionization damage in the high energy particle environment, because the interface-trapped hole caused by ionizing radiation reduces the carrier concentration in the depletion region and even induces the pinch-off of the p-doped side of the modulator, which may result in device failure. To improve the radiation hardness of the silicon photonic device, the passivation of the surface, optimization of the waveguide shape, and the choice of appropriate thickness of the buried oxide layer are possible solutions, and more effective approaches are still to be developed.
    Yue Zhou, Zhi-Yuan Hu, Da-Wei Bi, Ai-Min Wu. Progress of radiation effects of silicon photonics devices[J]. Acta Physica Sinica, 2019, 68(20): 204206-1
    Download Citation