• Acta Optica Sinica
  • Vol. 36, Issue 11, 1128001 (2016)
[in Chinese]1、2、* and [in Chinese]1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.1128001 Cite this Article Set citation alerts
    [in Chinese], [in Chinese]. Parametric Design of Flexure Supporting for Optical Space Remote Sensor Primary Mirror[J]. Acta Optica Sinica, 2016, 36(11): 1128001 Copy Citation Text show less
    References

    [1] Wang Zhongsu, Zhai Yan, Mei Gui, et al. Design of flexible support structure of reflector in space remote sensor[J]. Optics and Precision Engineering, 2010, 18(8): 1833-1840.

    [2] Zhao Shanshan, Bi Shusheng, Zong Guanghua, et al. New large-deflection flexure pivot based on curved flexure element[J]. Journal of Mechanical Engineering, 2009, 45(4): 8-12.

    [3] Xu Hong, Guan Yingjun. Structural design of large aperture SiC mirror subassembly[J]. Infrared and Laser Engineering, 2014, 43(S): 83-88.

    [4] Yu Jingjun, Pei Xu, Bi Shusheng, et al. State-of-arts of design method for flexure mechanisms[J]. Journal of Mechanical Engineering, 2010, 46(13): 2-13.

    [5] Li Zongxuan, Chen Xue, Zhang Lei, et al. Design of cartwheel flexural support for a large aperture space mirror[J]. Acta Optica Sinica, 2014, 34(6): 0622003.

    [6] Li Haixing, Ding Yalin, Zhang Hongwen. Support system study of rectangular mirror[J]. Acta Optica Sinica, 2015, 35(5): 0523002.

    [7] Chen Leitao. Research and systematic realization of parametric design method of parts[D]. Nanjing: Nanjing University of Science and Technology, 2004.

    [8] Wang Kejun, Dong Jihong, Xuan Ming, et al. The flexible structure design in the whiffletree structure[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2015, 38(4): 12-17.

    [9] Xin Hongwei, Liu Ju, Liu Lei. Support structure of primary mirror for small optical remote sensor[J]. Optics and Precision Engineering, 2015, 23(4): 1027-1033.

    [10] Liu Linhua, Xin Yong, Wang Wei. Multi-objective topology optimization for an off-road vehicle frame based on compromise programming[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(3): 382-385.

    [11] Kihm H, Moon I K, Yang H S, et al. 1 m lightweight mirror design using genetic algorithm[C]. 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies. International Society for Optics and Photonics, 2012, 8415:841514.

    [12] Michels G J, Genberg V L, Doyle K B, et al. Design optimization of actuator layouts of adaptive optics using a genetic algorithm[C]. Optics & Photonics 2005. International Society for Optics and Photonics, 2005, 5877: 58770L.

    CLP Journals

    [1] ZHANG Lei, KE Shan-liang, LI Lin, JIA Xue-zhi, DU Yi-min. Optimum Design of Ultra-light Mirror Series Flexible Support Structure[J]. Acta Photonica Sinica, 2018, 47(1): 122001

    [2] Ping Wang, Dapeng Tian, Ning Xu, Dimeng Xu. Analysis and Compensation of Image Rotation in Internally Mounted Scanning System for Aerial Electric-Optical Reconnaissance Platform[J]. Acta Optica Sinica, 2017, 37(9): 0908001

    [in Chinese], [in Chinese]. Parametric Design of Flexure Supporting for Optical Space Remote Sensor Primary Mirror[J]. Acta Optica Sinica, 2016, 36(11): 1128001
    Download Citation