• Chinese Journal of Quantum Electronics
  • Vol. 35, Issue 5, 594 (2018)
Pei LIU1、*, Wenjing CHENG2, Dalong QI1, Ye ZHENG1, Yunhua YAO1, and Shian ZHANG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2018.05.013 Cite this Article
    LIU Pei, CHENG Wenjing, QI Dalong, ZHENG Ye, YAO Yunhua, ZHANG Shian. Laser intensity influence on up-conversion luminescence control in Dy3+-doped glass[J]. Chinese Journal of Quantum Electronics, 2018, 35(5): 594 Copy Citation Text show less
    References

    [1] Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids[J]. Chemical Reviews, 2004, 104(1): 139-174.

    [2] Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chemical Society Reviews, 2009, 38(4): 976-989.

    [3] Nilsson J, Clarkson W A, Selvas R, et al. High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers[J]. Optical Fiber Technology, 2004, 10(1): 5-30.

    [4] Wintner E, Sorokin E, Sorokina I T. Recent developments in diode-pumped ultrashort pulse solide-state lasers[J]. Laser Physics., 2001, 11(11): 1193-1200.

    [5] Tessler N, Medvedev V, Kazes M, et al. Efficient near-infrared polymer nanocrystal light-emitting diodes[J]. Science, 2002, 295(5559): 1506-1508.

    [6] Zhou P, Wang X, Ma Y, et al. Review on recent progress on mid-infrared fiber lasers[J]. Laser Physics, 2012, 22(11): 1744-1751.

    [7] Sivakumar S, Veggel F C J M, Raudsepp M. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles[J]. Journal of the American Chemical Society, 2005, 127(36): 12464-12465.

    [8] Wang H Q, Batentschuk M, Osvet A, et al. Rare‐earth ion doped up‐conversion materials for photovoltaic applications[J]. Advanced Materials, 2011, 23(22‐23): 2675-2680.

    [9] Downing E, Hesselink L, Ralston J, et al. A three-color, solid-state, three-dimensional display[J]. Science, 1996, 273(5279): 1185-1189.

    [10] Li Y, Zhang J, Luo Y, et al. Color control and white light generation of upconversion luminescence by operating dopant concentrations and pump densities in Yb3+, Er3+ and Tm3+ tri-doped Lu2O3 nanocrystals[J]. Journal of Materials Chemistry, 2011, 21(9): 2895-2900.

    [11] Nyk M, Kumar R, Ohulchanskyy T Y, et al. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors[J]. Nano Letters, 2008, 8(11): 3834-3838.

    [12] Wang F, Tan W B, Zhang Y, et al. Luminescent nanomaterials for biological labelling[J]. Nanotechnology, 2006, 17(1): R1-R13.

    [13] Yu M, Li F, Chen Z, et al. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors[J]. Analytical Chemistry, 2009, 81(3): 930-935.

    [14] Vetrone F, Naccache R, Zamarron A, et al. Temperature sensing using fluorescent nanothermometers[J]. Acs Nano, 2010, 4(6): 3254-3258.

    [15] Gai S, Li C, Yang P, Lin J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications[J]. Chemical Reviews, 2014, 114(4): 2343-2389.

    [16] Scheps R. Upconversion laser process[J]. Progress in Quantum Electronics, 1996, 20(4): 271-358.

    [17] Wright J C. Up-Conversion and Excited State Energy Transfer in Rare-Earth Doped Materials[M]. Radiationless Processes in Molecules and Condensed Phases. Springer Berlin Heidelberg, 1976: 239-295.

    [18] Joubert M. Photon avalanche upconversion in rare earth laser materials[J]. Optical Materials, 1999, 11(2): 181-203.

    [19] Deng R, Qin F, Chen R, et al. Temporal full-colour tuning throngh non-steady-state upconversion[J]. Nature Nanotechnology, 2015, 10(3): 237-242.

    [20] Bettinelli M. Bright colours ahead[J]. Nature Nanotechnology, 2015, 10(3): 203-204.

    [21] Zhang S, Xu S, Ding J, et al. Single and two-photon fluorescence control of Er3+ ions by phase-shaped femtosecond laser pulse[J]. Applied Physics Letters, 2014, 104(1): 14101.

    [22] Zhang H, Yao Y, Zhang S, et al. Up-conversion luminescence polarization control in Er3+-doped NaYF4 nanocrystals[J]. Chinese Physics B, 2015, 25(2): 23201.

    [23] Yao Y, Zhang S, Zhang H, et al. Laser polarization and phase control of up-conversion fluorescence in rare-earth ions[J]. Scientific Reports, 2014, 4(07295): 1-5.

    [24] Lozovoy V V, Pastirk I, Walowicz K A, et al. Multiphoton intrapulse interference. II. Control of two-and three-photon laser induced fluorescence with shaped pulses[J]. Journal of Chemical Physics, 2003, 118(7): 3187-3196.

    [25] Walowicz K A, Pastirk I, Lozovoy V V, et al. Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases[J]. Journal of Physical Chemistry A, 2002, 10(41): 9369-9373.

    [26] Dudovich N, Dayan B, Faeder S M G, et al. Transform-limited pulses are not optimal for resonant multiphoton transitions[J]. Physical Review Letters, 2001, 8(1): 47-50.

    [27] Chuntonov L, Rybak L, Gandman A, et al. Frequency-domain coherent control of femtosecond two-photon absorption: Intermediate-field versus weak-field regime[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(3): 35504.

    [28] Chuntonov L, Rybak L, Gandman A, et al. Enhancement of intermediate-field two-photon absorption by rationally shaped femtosecond pulses[J]. Physical Review A, 2008, 77(2): 021403.

    [29] Chuntonov L, Rybak L, Gandman A, et al. Intermediate-field two-photon absorption enhancement by shaped femtosecond pulses: Tolerance to phase deviation from perfect antisymmetry[J]. Physical Review A, 2010, 81(4): 045401.

    LIU Pei, CHENG Wenjing, QI Dalong, ZHENG Ye, YAO Yunhua, ZHANG Shian. Laser intensity influence on up-conversion luminescence control in Dy3+-doped glass[J]. Chinese Journal of Quantum Electronics, 2018, 35(5): 594
    Download Citation