• Advanced Photonics
  • Vol. 1, Issue 5, 056001 (2019)
Peng Wang1, Xiong Shen1, Jun Liu1、2、3、*, and Ruxin Li1、2、3、*
Author Affiliations
  • 1Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, State Key Laboratory of High Field Laser Physics, Shanghai, China
  • 2University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
  • 3Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.1.5.056001 Cite this Article Set citation alerts
    Peng Wang, Xiong Shen, Jun Liu, Ruxin Li. Single-shot fourth-order autocorrelator[J]. Advanced Photonics, 2019, 1(5): 056001 Copy Citation Text show less
    References

    [1] D. Strickland, G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219-221(1985).

    [2] A. Dubietis, G. Jonusauskas, A. Piskarskas. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun., 88, 437-440(1992).

    [3] C. Danson et al. Petawatt class lasers worldwide. High Power Laser Sci. Eng., 3, e3(2015).

    [4] W. Li et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett., 43, 5681-5684(2018).

    [5] B. Shen et al. Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam. Plasma Phys. Controlled Fusion, 60, 044002(2018).

    [6] Z. Guo et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system. Opt. Express, 26, 26776-26786(2018).

    [7] H. Daido, M. Nishiuchi, A. S. Pirozhkov. Review of laser-driven ion sources and their applications. Rep. Prog. Phys., 75, 056401(2012).

    [8] D. Batani et al. Effects of laser prepulses on laser-induced proton generation. New J. Phys., 12, 045018(2010).

    [9] O. Lundh et al. Influence of shock waves on laser-driven proton acceleration. Phys. Rev. E, 76, 026404(2007).

    [10] M. Kaluza et al. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett., 93, 045003(2004).

    [11] A. G. MacPhee et al. Limitation on prepulse level for cone-guided fast-ignition inertial confinement fusion. Phys. Rev. Lett., 104, 055002(2010).

    [12] H.-B. Cai et al. Prepulse effects on the generation of high energy electrons in fast ignition scheme. Phys. Plasmas, 17, 023106(2010).

    [13] H. Kiriyama et al. High-contrast high-intensity repetitive petawatt laser. Opt. Lett., 43, 2595-2598(2018).

    [14] J. Wang et al. In-band noise filtering via spatio-spectral coupling. Laser Photonics Rev., 12, 1700316(2018).

    [15] C. Thaury et al. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys., 3, 424-429(2007).

    [16] A. Jullien et al. 10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation. Opt. Lett., 30, 920-922(2005).

    [17] S. Luan et al. High dynamic range third-order correlation measurement of picosecond laser pulse shapes. Meas. Sci. Technol., 4, 1426-1429(1993).

    [18] C. Dorrer, J. Bromage, J. D. Zuegel. High-dynamic-range single-shot cross-correlator based on an optical pulse replicator. Opt. Express, 16, 13534-13544(2008).

    [19] Y. Wang et al. Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers. Sci. Rep.-UK, 4, 3818(2014). https://doi.org/10.1038/srep03818

    [20] T. Oksenhendler et al. High dynamic, high resolution and wide range single shot temporal pulse contrast measurement. Opt. Express, 25, 12588-12600(2017).

    [21] L. Obst et al. On-shot characterization of single plasma mirror temporal contrast improvement. Plasma Phys. Controlled Fusion, 60, 054007(2018).

    [22] D. Haffa et al. Temporally resolved intensity contouring (TRIC) for characterization of the absolute spatio-temporal intensity distribution of a relativistic, femtosecond laser pulse. Sci. Rep.-UK, 9, 7697(2019).

    [23] X. Shen et al. Temporal contrast reduction techniques for high dynamic-range temporal contrast measurement. Opt. Express, 27, 10586-10601(2019).

    [24] A. Jullien et al. Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme. Appl. Phys. B, 84, 409-414(2006).

    [25] X. Shen et al. Linear angular dispersion compensation of cleaned self-diffraction light with a single prism. High Power Laser Sci. Eng., 6, e23(2018).

    [26] J. Liu et al. Temporal contrast enhancement of femtosecond pulses by a self-diffraction process in a bulk Kerr medium. Opt. Express, 18, 22245-22254(2010).

    [27] J. Liu et al. Transient-grating self-referenced spectral interferometry for infrared femtosecond pulse characterization. Opt. Lett., 37, 4829-4831(2012).

    [28] V. A. Schanz et al. Noise reduction in third order cross-correlation by angle optimization of the interacting beams. Opt. Express, 25, 9252-9261(2017).

    [29] J. Collier et al. A single-shot third-order autocorrelator for pulse contrast and pulse shape measurements. Laser Part Beams, 19, 231-235(2001).

    [30] L. P. Yu et al. High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti:sapphire laser. Opt. Express, 26, 2625-2633(2018).

    [31] N. Xie et al. Suppression of prepulses by a temporal pulse cleaner based on a self-diffraction process for an ultraintense femtosecond laser. Optik, 178, 279-284(2019).

    [32] Y. Chu et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses. Opt. Lett., 40, 5011-5014(2015).

    Peng Wang, Xiong Shen, Jun Liu, Ruxin Li. Single-shot fourth-order autocorrelator[J]. Advanced Photonics, 2019, 1(5): 056001
    Download Citation