• Acta Optica Sinica
  • Vol. 41, Issue 13, 1306011 (2021)
Fan Shang, Yue Qi, Lina Ma*, Peng Jiang, Yu Chen, Jun Wang, and Shuidong Xiong
Author Affiliations
  • College of Meteorology and Oceanography, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/AOS202141.1306011 Cite this Article Set citation alerts
    Fan Shang, Yue Qi, Lina Ma, Peng Jiang, Yu Chen, Jun Wang, Shuidong Xiong. Background Phase Noise of Interferometric TDM Sensing Array Based on Fiber Bragg Grating[J]. Acta Optica Sinica, 2021, 41(13): 1306011 Copy Citation Text show less
    References

    [1] Okawara C, Saijyou K. Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing[J]. Acoustical Science and Technology, 28, 39-42(2007).

    [2] Tao X, Jiang S, Song K. Low-cost and long-perimeter system based on weak grating array and its alarm mechanism[J]. Chinese Journal of Lasers, 47, 0406001(2020).

    [3] Ding P, Wu J, Kang D et al. Detection of acoustic wave direction using weak-reflection fiber Bragg gratings[J]. Chinese Journal of Lasers, 47, 0506002(2020).

    [4] Zhang W C, Zhao H, Liu T et al. Acoustic detection technology based on fiber Bragg grating Fabry-Perot interferometer in liquid medium[J]. Acta Optica Sinica, 33, 0906001(2013).

    [5] Guo Z, Gao K, Yang H et al. 20-mm-diameter interferometric hydrophone towed array based on fiber Bragg gratings[J]. Acta Optica Sinica, 39, 1106003(2019).

    [6] Kirkendall C, Barock T, Tveten A et al. Fiber optic towed arrays Washington, DC: U. S[R]. Naval Research Laboratory Optical Sciences Division, 121-123(2007).

    [7] Jiang Y, Chen S F. Direct demodulation for signal from fiber grating sensors by interferometer based on 3×3 coupler[J]. Acta Optica Sinica, 24, 1487-1490(2004).

    [8] Ma L N, Yu Y, Wang J et al. Analysis on real-time phase delay in an interferometric FBG sensor array using polarization switching and the PGC hybrid processing method[J]. Optics Express, 28, 21903-21915(2020).

    [9] Kumar S S, Khansa C A, Praveen T V et al. Assessment of dynamic range in interferometric fiber optic hydrophones based on homodyne PGC interrogator[J]. IEEE Sensors Journal, 20, 13418-13425(2020).

    [10] Zhang N, Rao W, Meng Z et al. Investigation on the maximum signal handling capability of fiber optic interferometric sensor based on the digital heterodyne demodulation scheme[J]. Optik, 125, 5771-5775(2014).

    [11] Dandridge A, Tveten A, Giallorenzi T. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier[J]. IEEE Journal of Quantum Electronics, 18, 1647-1653(1982).

    [12] Ming N, Yang H Y, Xiong S D et al. Investigation of polarization-induced fading in fiber-optic interferometers with polarizer-based polarization diversity receivers[J]. Applied Optics, 45, 2387-2390(2006).

    [13] Kersey A D, Marrone M J. Input-polarisation scanning technique for overcoming polarisation-induced signal fading in interferometric fibre sensors[J]. Electronics Letters, 24, 931-933(1988).

    [14] Ferreira L A, Santos J L, Farahi F. Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements[J]. Applied Optics, 34, 6399-6402(1995).

    [15] Ma L N, Wang J, Hu Z L et al. An ultra-low crosstalk and polarization independent inline interferometric fiber Bragg grating sensor array. [C]∥26th International Conference on Optical Fiber Sensors (OFS26), September 24-28, 2018, Vaud, Switzerland. Washington, DC: OSA, ThE77(2018).

    [16] Waagaard O H, Ronnekleiv E. Method. -07-25[2021-03-12]. https:∥patents.google.com/patent/US7081959B2/en.(2006).

    [17] Tu J X, Huang J B, Gu H C et al. Phase noise of fiber laser hydrophone demodulation interferometer[J]. Ship Electronic Engineering, 36, 165-169(2016).

    [18] Cao C Y, Yao Q, Rao W et al. Linewidth measurement using unbalanced fiber-optic interferometer for narrow linewidth lasers[J]. Chinese Journal of Lasers, 38, 0508005(2011).

    [19] Yu Y L, Tan L, Li Q et al. Influence of thermal effect caused by piezoelectric transducer on interferometric demodulation for fiber Bragg grating sensor[J]. Acta Optica Sinica, 34, 0506005(2014).

    [20] Ronnekleiv E, Waagaard O H, Thingbo D et al. Suppression of Rayleigh scattering noise in a TDM multiplexed interferometric sensor system. [C]∥OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, February 24-28, 2008, San Diego, CA, USA. Washington, DC: OSA, OMT4(2008).

    [21] Jiang P, Ma L N, Hu Z L et al. An 8-TDM inline fiber Fabry-Perot sensor array based on ultra-weak fiber Bragg gratings. [C]∥Asia Communications and Photonics Conference 2015, November 19-23, 2015, Hong Kong, China. Washington, DC: OSA, AM1D, 4(2015).

    [22] Jiang P, Ma L N, Hu Z L et al. Low-crosstalk and polarization-independent inline interferometric fiber sensor array based on fiber Bragg gratings[J]. Journal of Lightwave Technology, 34, 4232-4239(2016).

    [23] Cai H W, Ye Q, Wang Z Y et al. Distributed optical fiber acoustic sensing technology based on coherent Rayleigh scattering[J]. Laser & Optoelectronics Progress, 57, 050001(2020).

    [24] Liao Y B, Li M[M]. Fiber optics, 72-74(2013).

    [25] Ma L N. Fiber laser hydrophone[D]. Changsha: National University of Defense Technology, 41-42(2010).

    [26] Zhou S L[J]. Crosstalk suppression technology in optical fiber grating hydrophone arrays Optical Fiber & Electric Cable and Their Applications, 2016, 26-31.

    Fan Shang, Yue Qi, Lina Ma, Peng Jiang, Yu Chen, Jun Wang, Shuidong Xiong. Background Phase Noise of Interferometric TDM Sensing Array Based on Fiber Bragg Grating[J]. Acta Optica Sinica, 2021, 41(13): 1306011
    Download Citation