• Acta Optica Sinica
  • Vol. 37, Issue 4, 412005 (2017)
Liu Gang*, Zhao Yuting, and Quan Wei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201737.0412005 Cite this Article Set citation alerts
    Liu Gang, Zhao Yuting, Quan Wei. Measurement of Linearly Polarized Light Rotation Caused by Spherical Alkali Vapor Cell Based on Difference Detection[J]. Acta Optica Sinica, 2017, 37(4): 412005 Copy Citation Text show less
    References

    [1] Knappe S, Shah V, Schwindt P D D, et al. A microfabricated atomic clock[J]. Applied Physics Letters, 2004, 85(9): 1460-1462.

    [2] Budker D, Romalis M. Optical magnetometer[J]. Natural Physics, 2007, 3(4): 227-234.

    [3] Ledbetter M P, Savukov I M, Acosta V M, et al. Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Physics Review A, 2008, 77(3): 033408.

    [4] Cooper J J, Hallwood D W, Dunningham J A. Entanglement-enhanced atomic gyroscope[J]. Physics Review A, 2010, 81(4): 043624.

    [5] Fang J C, Wan S A, Qin J, et al. A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation[J]. Review of Scientific Instruments, 2013, 84(8): 083108.

    [6] Bell W E, Bloom A L, Lynch J. Alkali metal vapor spectral lamps[J]. Review of Science Instruments, 1961, 32(6): 688-692.

    [7] Eklund E J, Shkel A M. Glass blowing on a wafer level[J]. Journal of Microelectromechanical Systems, 2007, 16(2): 232-239.

    [8] Dural N, Romalis M V. Gallium phosphide as a new material for anodically bonded atomic sensors[J]. Applied Physics Letters Material, 2014, 2(8): 086101.

    [9] Eklund J E, Shkel A M, Knappe S, et al. Glass-blown spherical microcells for chip-scale atomic devices[J]. Sensors and Actuators A, 2008, 143(1): 175-180.

    [10] Liew L A, Knappe S, Moreland J, et al. Microfabricated alkali atom vapor cells[J]. Applied Physics Letters, 2004, 84(14): 2694-2696.

    [11] P′etremand Y, Affolderbach C. Straessle R, et al. Microfabricated rubidium vapour cellwith a thick glass core for small-scaleatomic clock applications[J]. Journal of Micromechanics and Microengineering, 2012, 22(2): 025013.

    [12] Straessle R, Pellaton M, Affolderbach C, et al. Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks[J]. Journal of Applied Physics, 2013, 113(6): 064501.

    [13] Knappe S, Velichansky V, Robinson H G, et al. Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glassfibers[J]. Review of Scientific Instruments, 2003, 74(6): 3142-3145.

    [14] Balabas M V, Budker D, Kitching J, et al. Magnetometry with millimeter-scale antirelaxation-coated alkali-metal vapor cells[J]. Journal of the Optical Society of America B, 2005, 23(6): 1001-1006.

    [15] Atutov S N, Benimetskiy F A, Plekhanov A I, et al. Study of Rb-vapor coated cells-atomic diffusion and cell curing process[J]. The European Physical Journal D, 2016, 70(2): 1-6.

    [16] Wei Q, Yang L, Yao C, et al. Coating qualities evaluation for alkali-metal atomic vapor cells based on frustrated total internal reflection[J]. Chinese Physics Letters, 2014, 31(3): 030701.

    [17] Kornack T W. A test of CPT and Lorentz symmetry using a K-3 He co-magnetometer[D]. Princeton: Princeton University, 2005: 141-143.

    [18] Tang Feilong, Li Zhongliang, Bu Yang, et al. Calibration of rotating quarter-wave method based polarimeter[J]. Acta Optica Sinica, 2013, 33(9): 0912005.

    [19] Yu Zhenfang, Qiu Qi, Guo Yong. Dual modulation optical polarimetry for glucose monitoring[J]. Acta Optica Sinica, 2016, 36(1): 0117001.

    [20] Ding Zhichao, Li Yingying, Wang Zhiguo, et al. Research of rubidium atomic magnetometer based on Faraday rotation detection[J]. Chinese J Lasers, 2015, 42(4): 0408003.

    Liu Gang, Zhao Yuting, Quan Wei. Measurement of Linearly Polarized Light Rotation Caused by Spherical Alkali Vapor Cell Based on Difference Detection[J]. Acta Optica Sinica, 2017, 37(4): 412005
    Download Citation