• Acta Optica Sinica
  • Vol. 43, Issue 22, 2200001 (2023)
Chengcheng Chang1、2, Liangze Pan1、2, Yingming Xu1、2, Liqing Wu1、2, Hua Tao1、2, Deng Liu3, Fei Chen3, Cheng Liu1、2, and Jianqiang Zhu1、2、*
Author Affiliations
  • 1Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2National Laboratory on High Power Laser and Physics, China Academy of Engineering Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3A Center of Equipment Development Department, Beijing 100034, China
  • show less
    DOI: 10.3788/AOS230974 Cite this Article Set citation alerts
    Chengcheng Chang, Liangze Pan, Yingming Xu, Liqing Wu, Hua Tao, Deng Liu, Fei Chen, Cheng Liu, Jianqiang Zhu. Application and Progress of Computational Optical Imaging in Inertial Confinement Fusion[J]. Acta Optica Sinica, 2023, 43(22): 2200001 Copy Citation Text show less
    References

    [2] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 12, 435-448(2016).

    [3] Park H S, Hurricane O A, Callahan D A et al. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility[J]. Physical Review Letters, 112, 055001(2014).

    [4] Denis V, Beau V, Le Deroff L et al. The laser megajoule facility: laser performances and comparison with computational simulation[J]. Proceedings of SPIE, 10084, 100840I(2017).

    [5] Zhu J Q, Zhu J, Li X C et al. High power glass laser research progresses in NLHPLP[J]. Proceedings of SPIE, 10084, 1008405(2017).

    [6] Zylstra A B, Hurricane O A, Callahan D A et al. Burning plasma achieved in inertial fusion[J]. Nature, 601, 542-548(2022).

    [8] Li X Y. Study on near field of the beam in high power laser facility[D](2010).

    [9] Jiao Z Y. Research on spatial temporal characteristics of optical beam in final optics system of high power laser driver[D](2014).

    [10] Hartmann P, Mauch R, Kohlmann H. Advances in homogeneity measurement of optical glasses at the Schott 20-in. Fizeau interferometer[J]. Proceedings of SPIE, 2775, 108-114(1996).

    [11] Jiang Z L. Research on characteristics and application of Hartmann wavefront sensor[D](2005).

    [12] Zacharias R A, Beer N R, Bliss E S et al. National Ignition Facility alignment and wavefront control[J]. Proceedings of SPIE, 5341, 168-179(2004).

    [13] Haynam C A, Wegner P J, Auerbach J M et al. National Ignition Facility laser performance status[J]. Applied Optics, 46, 3276-3303(2007).

    [14] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).

    [15] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [16] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [17] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).

    [18] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 85, 4795-4797(2004).

    [19] Maiden A M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 29, 1606-1614(2012).

    [20] Zhang F C, Rodenburg J M. Phase retrieval based on wave-front relay and modulation[J]. Physical Review B, 82, 121104(2010).

    [21] Matsuoka S, Yamakawa K. Wave-front measurements of terawatt-class ultrashort laser pulses by the Fresnel phase-retrieval method[J]. Journal of the Optical Society of America B, 17, 663-667(2000).

    [22] Kruschwitz B E, Bahk S W, Bromage J et al. Accurate target-plane focal-spot characterization in high-energy laser systems using phase retrieval[J]. Optics Express, 20, 20874-20883(2012).

    [23] Wang H Y, Liu C, Veetil S P et al. Measurement of the complex transmittance of large optical elements with Ptychographical iterative engine[J]. Optics Express, 22, 2159-2166(2014).

    [24] Pan X C, Tao H, Liu C et al. Applications of iterative algorithm based on phase modulation in high power laser facilities[J]. Chinese Journal of Lasers, 43, 0108001(2016).

    [25] He X L, Pan X C, Tao H A et al. Generalized deterministic linear model for coherent diffractive imaging[J]. AIP Advances, 12, 065225(2022).

    [26] Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 150, 87-184(2008).

    [27] Zuo J M, Vartanyants I, Gao M et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J]. Science, 300, 1419-1421(2003).

    [28] Godden T M, Suman R, Humphry M J et al. Ptychographic microscope for three-dimensional imaging[J]. Optics Express, 22, 12513-12523(2014).

    [29] Pan X C, Liu C, Xiao W G et al. Recent developments in coherent diffraction imaging: ptychographic iterative engine[J]. Laser & Optoelectronics Progress, 59, 2200001(2022).

    [30] Pan X C, Liu C, Zhu J Q. Single shot ptychographical iterative engine based on multi-beam illumination[J]. Applied Physics Letters, 103, 171105(2013).

    [31] Sidorenko P, Cohen O. Single-shot ptychography[J]. Optica, 3, 9-14(2015).

    [32] Chang C C, Pan X C, Tao H et al. Reconstruction algorithm for ptychographic iterative engine with highly tilted illumination[J]. Acta Optica Sinica, 40, 1705001(2020).

    [33] Chang C C, Pan X C, Tao H A et al. Single-shot ptychography with highly tilted illuminations[J]. Optics Express, 28, 28441-28451(2020).

    [34] Chang C C, Pan X C, Tao H A et al. 3D single-shot ptychography with highly tilted illuminations[J]. Optics Express, 29, 30878-30891(2021).

    [35] Goldberger D, Barolak J, Durfee C G et al. Three-dimensional single-shot ptychography[J]. Optics Express, 28, 18887-18898(2020).

    [36] Dong X, Pan X C, Liu C et al. Single shot multi-wavelength phase retrieval with coherent modulation imaging[J]. Optics Letters, 43, 1762-1765(2018).

    [37] Dong X, Pan X C, Liu C et al. An online diagnosis technique for simultaneous measurement of the fundamental, second and third harmonics in one snapshot[J]. High Power Laser Science and Engineering, 7, e48(2019).

    [38] Wang H Y. High-resolution phase measurement technology based on coherent diffractive imaging[D](2015).

    [39] Tao H. Research on wavefront measurement method of high power laser beam based on coherent modulation imaging[D](2016).

    [40] Pan X C. Study on the application of coherent diffraction imaging in laser driver[D](2016).

    [41] He X, Liu C, Zhu J Q. On-line beam diagnostics based on single-shot beam splitting phase retrieval[J]. Chinese Optics Letters, 16, 091001(2018).

    [42] He X, Pan X C, Liu C et al. Single-shot phase retrieval based on beam splitting[J]. Applied Optics, 57, 4832-4838(2018).

    [43] Xu Y M, Pan X C, Liu C et al. Single-shot phase reconstruction based on beam splitting encoding and averaging[J]. Optics Express, 29, 43985-43999(2021).

    [44] Lubin M J, Soures J M, Goldman L M. Large-aperture Nd-glass laser amplifier for high-peak-power application[J]. Journal of Applied Physics, 44, 347-350(1973).

    [45] Kuzmin A A, Khazanov E A, Shaykin A A. Large-aperture Nd∶glass laser amplifiers with high pulse repetition rate[J]. Optics Express, 19, 14223-14232(2011).

    [46] Brady G R, Fienup J R. Measurement range of phase retrieval in optical surface and wavefront metrology[J]. Applied Optics, 48, 442-449(2009).

    [47] Deng X M, Liang X C, Chen Z Z et al. Uniform illumination of large targets using a lens array[J]. Applied Optics, 25, 377-381(1986).

    [48] Li T H. Study on polymer microlens and its array[D](2006).

    [49] Wang H Y, Liu C, Pan X C et al. The application of ptychography in the field of high power laser[J]. Proceedings of SPIE, 9255, 925534(2015).

    [50] Zhou Y, Liao J, Guo R et al. Study on low-stress supporting structure for large-aperture precision optical element[J]. Laser & Infrared, 44, 554-558(2014).

    [51] Wu C X, Zhou Y, Liao Q et al. Research on unstressing retain of large-scale optical mirror[J]. Machinery Manufacturing Engineer, 57-59(2005).

    [52] Tietbohl G L, Sommer S C. Stability design considerations for mirror support systems in ICF lasers[J]. Proceedings of SPIE, 3047, 649-660(1997).

    [53] Kaufman M I, Celeste J R, Frogget B C et al. Optomechanical considerations for the VISAR diagnostic at the National Ignition Facility (NIF)[J]. Proceedings of SPIE, 6289, 628906(2006).

    [54] Cheng B, Zhang X J, Liu C et al. Full-field stress measurement based on polarization ptychography[J]. Journal of Optics, 21, 065602(2019).

    [55] Zhang L, Liu X G, Bi Z Y et al. Reviews of heat dissipation technology with high heat flux for high-power laser system[J]. Environmental Technology, 36, 82-88(2018).

    [56] Chow R, Ault L E, Taylor J R et al. Thermally induced distortion of a high-average-power laser system by an optical transport system[J]. Proceedings of SPIE, 3782, 246-254(1999).

    [57] Tao H, Liu C, Pan X C et al. Measurement of thermal distortion of the optical element in high repetition rate laser with coherent modulation imaging[J]. Chinese Journal of Lasers, 43, 1101002(2016).

    [58] Jeong T M, Choi I W, Hafz N et al. Wavefront correction and customization of focal spot of 100 TW Ti∶sapphire laser system[J]. Japanese Journal of Applied Physics, 46, 7724-7730(2007).

    [59] Jeong T M, Kim C M, Ko D K et al. Reconstruction of wavefront aberration of 100-TW Ti∶sapphire laser pulse using phase retrieval method[J]. Journal of the Optical Society of Korea, 12, 186-191(2008).

    [60] Bromage J, Bahk S W, Irwin D et al. A focal-spot diagnostic for on-shot characterization of high-energy petawatt lasers[J]. Optics Express, 16, 16561-16572(2008).

    [61] Tao H, Veetil S P, Pan X C et al. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method[J]. Applied Optics, 54, 6632-6639(2015).

    [62] Pan X C, Veetil S P, Liu C et al. On-shot laser beam diagnostics for high-power laser facility with phase modulation imaging[J]. Laser Physics Letters, 13, 055001(2016).

    [63] He X L, Tao H, Pan X C et al. Single-shot measurement of the near-field and focal spot profiles of a 351 nm laser beam for SGII-upgraded facility with multiple-focal-plane constraint coherent modulation imaging[J]. Optics Express, 30, 42861-42874(2022).

    [64] Wegner P J, Auerbach J M, Biesiada T A, et al. NIF final optics system: frequency conversion and beam conditioning[J]. Proceedings of SPIE, 5341, 180-189(2004).

    [65] Zhu J Q. Review of special issue on high power facility and technical development at the NLHPLP[J]. High Power Laser Science and Engineering, 7, e12(2019).

    [66] Zhu J Q, Xie X L, Sun M Z et al. Analysis and construction status of SG-II 5PW laser facility[J]. High Power Laser Science and Engineering, 6, e29(2018).

    [67] Fee M S, Danzmann K, Chu S. Optical heterodyne measurement of pulsed lasers: toward high-precision pulsed spectroscopy[J]. Physical Review A, 45, 4911-4924(1992).

    [68] Gangopadhyay S, Melikechi N, Eyler E E. Optical phase perturbations in nanosecond pulsed amplification and second-harmonic generation[J]. Journal of the Optical Society of America B, 11, 231-241(1994).

    [69] Bowlan P, Trebino R. Complete single-shot measurement of arbitrary nanosecond laser pulses in time[J]. Optics Express, 19, 1367-1377(2011).

    [70] Pan L Z, Liu C, Zhu J Q. Online measurement algorithm of nanosecond pulses based on temporal shearing[J]. Chinese Journal of Lasers, 48, 2404004(2021).

    [71] Pan L Z, Liu C, Veetil S P et al. Temporal self-referencing technique for the diagnostics of nanosecond laser pulse[J]. Optics and Lasers in Engineering, 148, 106751(2022).

    [72] Xu Y M, Yi Y J, Zhu P et al. Simple single-shot complete spatiotemporal intensity and phase measurement of an arbitrary ultrashort pulse using coherent modulation imaging[J]. Optics Letters, 47, 5664-5667(2022).

    [73] Zheng H Y, Yin F K, Wang T J et al. Diffraction analysis method of femtosecond laser filamentation[J]. Chinese Journal of Lasers, 49, 2408001(2022).

    [74] Tiwari V, Sutton M A, McNeill S R. Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation[J]. Experimental Mechanics, 47, 561-579(2007).

    [75] Yue Q Y, Cheng Z J, Han L et al. One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena[J]. Optics Express, 25, 14182-14191(2017).

    [76] Liang J Y, Zhu L R, Wang L V. Single-shot real-time femtosecond imaging of temporal focusing[J]. Light: Science & Applications, 7, 42(2018).

    [77] Wang A W, Li C, Dai Q. Ultrafast low-energy electron holographic imaging based on coherent electron source[J]. Chinese Journal of Lasers, 50, 0113003(2023).

    [78] Xu Y M, Pan X C, Sun M Y et al. Single-shot ultrafast multiplexed coherent diffraction imaging[J]. Photonics Research, 10, 1937-1946(2022).

    [79] Zhang F, Cai H B, Zhou W M et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 16, 810-814(2020).

    [81] Zhong J Y, Li Y T, Wang X G et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 6, 984-987(2010).

    [82] Ping Y L, Zhong J Y, Wang X G et al. Turbulent magnetic reconnection generated by intense lasers[J]. Nature Physics, 19, 263-270(2023).

    Chengcheng Chang, Liangze Pan, Yingming Xu, Liqing Wu, Hua Tao, Deng Liu, Fei Chen, Cheng Liu, Jianqiang Zhu. Application and Progress of Computational Optical Imaging in Inertial Confinement Fusion[J]. Acta Optica Sinica, 2023, 43(22): 2200001
    Download Citation