• Acta Optica Sinica
  • Vol. 44, Issue 7, 0728004 (2024)
Yize Liu1、2、3, Junfeng Jiang1、2、3、*, Kun Liu1、2、3, Shuang Wang1、2、3, Yixuan Wang1、2、3, Xin Chen1、2、3, and Tiegen Liu1、2、3
Author Affiliations
  • 1School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of the Ministry of Educatiom on Optoelectronic Information Technology, Tianjin 300072, China
  • 3Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/AOS231920 Cite this Article Set citation alerts
    Yize Liu, Junfeng Jiang, Kun Liu, Shuang Wang, Yixuan Wang, Xin Chen, Tiegen Liu. Gas Sensor Based on Graphene Oxide-Coated Hollow Microbubble Whisper Gallery Resonant Mode[J]. Acta Optica Sinica, 2024, 44(7): 0728004 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [2] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [3] Fowler J D, Allen M J, Tung V C et al. Practical chemical sensors from chemically derived graphene[J]. ACS Nano, 3, 301-306(2009).

    [4] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 6, 183-191(2007).

    [5] Schedin F, Geim A K, Morozov S V et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 6, 652-655(2007).

    [6] Yao B C, Wu Y, Cheng Y et al. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide[J]. Sensors and Actuators B: Chemical, 194, 142-148(2014).

    [7] Rumyantsev S, Liu G X, Shur M S et al. Selective gas sensing with a single pristine graphene transistor[J]. Nano Letters, 12, 2294-2298(2012).

    [8] Yu C B. Research and application of fiber-optic sensing technology based on graphene oxide[D](2018).

    [9] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials[J]. Small, 6, 711-723(2010).

    [10] Lerf A, He H Y, Forster M et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry B, 102, 4477-4482(1998).

    [11] Chung M G, Kim D H, Lee H M et al. Highly sensitive NO2 gas sensor based on ozone treated graphene[J]. Sensors and Actuators B: Chemical, 166/167, 172-176(2012).

    [12] Yasaei P, Kumar B, Hantehzadeh R et al. Chemical sensing with switchable transport channels in graphene grain boundaries[J]. Nature Communications, 5, 4911(2014).

    [13] Li C, Cai L, Li W W et al. Adsorption of NO2 by hydrazine hydrate-reduced graphene oxide[J]. Acta Physica Sinica, 68, 118102(2019).

    [14] Chen H, Peng T J, Liu B et al. Research progress in gas sensors based on graphene oxide[J]. Materials Reports, 30, 57-63(2016).

    [15] Cittadini M, Bersani M, Perrozzi F et al. Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor[J]. Carbon, 69, 452-459(2014).

    [16] Toda K, Furue R, Hayami S. Recent progress in applications of graphene oxide for gas sensing: a review[J]. Analytica Chimica Acta, 878, 43-53(2015).

    [17] Singh M, Raghuwanshi S K, Prakash O. Ultra-sensitive fiber optic gas sensor using graphene oxide coated long period gratings[J]. IEEE Photonics Technology Letters, 31, 1473-1476(2019).

    [18] Liu T G, Yu Z, Jiang J F et al. Advances of some critical technologies in discrete and distributed optical fiber sensing research[J]. Acta Physica Sinica, 66, 070705(2017).

    [19] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [20] Foreman M R, Swaim J D, Vollmer F. Whispering gallery mode sensors[J]. Advances in Optics and Photonics, 7, 168-240(2015).

    [21] Liu Y Z, Jiang J F, Liu K et al. Liquid-core-microtubule-enhanced laser sensor for high-resolution temperature measurement[J]. IEEE Sensors Journal, 23, 14167-14173(2023).

    [22] Zhang X Y, Yang H M, Deng G L et al. All-optical control of ultrahigh-Q whispering gallery microspheres with laser-induced graphene[J]. Laser & Optoelectronics Progress, 60, 2314004(2023).

    [23] Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators[J]. Optics Letters, 21, 453-455(1996).

    [24] Gregor M, Pyrlik C, Henze R et al. An alignment-free fiber-coupled microsphere resonator for gas sensing applications[J]. Applied Physics Letters, 96, 231102(2010).

    [25] Passaro V M N, Dell'Olio F, de Leonardis F. Ammonia optical sensing by microring resonators[J]. Sensors, 7, 2741-2749(2007).

    [26] Jiang X F, Qavi A J, Huang S H et al. Whispering-gallery sensors[J]. Matter, 3, 371-392(2020).

    [27] Sun Y Z, Liu J, Frye-Mason G et al. Optofluidic ring resonator sensors for rapid DNT vapor detection[J]. Analyst, 134, 1386-1391(2009).

    [28] Yao B C, Yu C B, Wu Y et al. Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection[J]. Nano Letters, 17, 4996-5002(2017).

    [29] Paul R K, Badhulika S, Saucedo N M et al. Graphene nanomesh as highly sensitive chemiresistor gas sensor[J]. Analytical Chemistry, 84, 8171-8178(2012).

    [30] Li Z Q, Henriksen E A, Jiang Z et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 4, 532-535(2008).

    [31] Lee C Y, Strano M S. Understanding the dynamics of signal transduction for adsorption of gases and vapors on carbon nanotube sensors[J]. Langmuir, 21, 5192-5196(2005).

    [32] Peng Y, Li J H. Ammonia adsorption on graphene and graphene oxide: a first-principles study[J]. Frontiers of Environmental Science & Engineering, 7, 403-411(2013).

    [33] Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules[J]. Nature Methods, 5, 591-596(2008).

    [34] Jiang J F, Liu Y Z, Liu K et al. Wall-thickness-controlled microbubble fabrication for WGM-based application[J]. Applied Optics, 59, 5052-5057(2020).

    [35] Cai M, Painter O, Vahala K J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system[J]. Physical Review Letters, 85, 74-77(2000).

    [36] Yu Z, Wang S, Jiang J F et al. Investigation of fused tapering with inner pressurized air for microcapillary-based optical sensor[J]. Optical Fiber Technology, 45, 244-249(2018).

    Yize Liu, Junfeng Jiang, Kun Liu, Shuang Wang, Yixuan Wang, Xin Chen, Tiegen Liu. Gas Sensor Based on Graphene Oxide-Coated Hollow Microbubble Whisper Gallery Resonant Mode[J]. Acta Optica Sinica, 2024, 44(7): 0728004
    Download Citation