• Laser & Optoelectronics Progress
  • Vol. 58, Issue 23, 2300001 (2021)
Xu Zhao1、2, Zhong Su1、2、*, Lianpeng Li1、2, Fuchao Liu1、2, Ning Liu1、2, and Hao Yu1
Author Affiliations
  • 1Beijing Key Laboratory of High Dynamic Navigation Technology, Beijing Information Science & Technological University, Beijing 100192, China
  • 2Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science & Technological University, Beijing 100192, China
  • show less
    DOI: 10.3788/LOP202158.2300001 Cite this Article Set citation alerts
    Xu Zhao, Zhong Su, Lianpeng Li, Fuchao Liu, Ning Liu, Hao Yu. Research Progress of Error Compensation Technology for Pulsed Laser Time-of-Flight Ranging[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2300001 Copy Citation Text show less
    References

    [1] Kurtti S, Jansson J P, Kostamovaara J. A CMOS receiver-TDC chip set for accurate pulsed TOF laser ranging[J]. IEEE Transactions on Instrumentation and Measurement, 69, 2208-2217(2020).

    [2] Ouyang T C, Dong G P, Qiu J R. Research progress in solid-state lasers based on rare earth ion-doped oxyfluoride glass ceramics[J]. Laser & Optoelectronics Progress, 57, 071608(2020).

    [3] Ishizaki Y, Zhang C, Set S Y et al. A novel software-based optical sampling scheme for high-precision and interference-free time-of-flight LiDAR[C], AF3M.1(2020).

    [4] Jing L Q, Zheng G, Sun B et al. Measurement of distance to moving target using frequency-modulated continuous-wave interference technique[J]. Chinese Journal of Lasers, 46, 1204001(2019).

    [5] Song Z Q, Zhu J G, Xie T P et al. Research progress on security LiDAR[J]. Laser & Optoelectronics Progress, 58, 0100002(2021).

    [6] Pasquinelli K, Lussana R, Tisa S et al. Single-photon detectors modeling and selection criteria for high-background LiDAR[J]. IEEE Sensors Journal, 20, 7021-7032(2020).

    [7] Qi R Y, Li K, Yang S H et al. Elimination of backscatter noise of underwater LiDAR using independent component analysis algorithm[J]. Acta Optica Sinica, 41, 0401004(2021).

    [8] Lu T X, Zhang Y R, Zhang Y F et al. A constant fraction discriminator for laser pulse ranging[J]. Microelectronics, 49, 812-816(2019).

    [9] Huang M S. Time-of-flight laser ranging technique of single transmitted pulse[J]. Laser & Optoelectronics Progress, 54, 120007(2017).

    [10] Fang J, She C, Liu J P. A denoising method based on photon counting lidar[J]. Shipboard Electronic Countermeasure, 42, 10-15(2019).

    [11] Xie G C, Ye Y D, Li J M et al. Echo characteristics and range error for pulse laser ranging[J]. Chinese Journal of Lasers, 45, 0610001(2018).

    [12] Yang J Q, Liu X L, Gu G H et al. A double threshold correction method for walk error in pulsed laser ranging system[J]. Infrared Physics & Technology, 100, 28-36(2019).

    [13] Cucerca S, Didyk P, Seidel H P et al. Computational image marking on metals via laser induced heating[J]. ACM Transactions on Graphics, 39, 1-11(2020).

    [14] Xie G C, Ye Y D, Luo Z X et al. Light echo stability of pulsed laser ranging of flight targets[J]. Laser & Optoelectronics Progress, 55, 091207(2018).

    [15] Cho Y, Yoon Y, Lyu J et al. Auto gain control method using the current sensing amplifier to compensate the walk error of the TOF LiDAR (ICCAS 2019)[C], 1403-1406(2019).

    [16] Wang X Y, Ma R, Li D et al. A low walk error analog front-end circuit with intensity compensation for direct ToF LiDAR[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 67, 4309-4321(2020).

    [17] Bai X F, Feng D, Qin C et al. Design and experimental study of high precision pulsed laser ranging system[J]. Laser Journal, 40, 6-10(2019).

    [18] Won J Y, Lee J S. Time-to-digital converter using a tuned-delay line evaluated in 28-, 40-, and 45-nm FPGAs[J]. IEEE Transactions on Instrumentation and Measurement, 65, 1678-1689(2016).

    [19] Xiao J, Lopez M, Hu X G et al. A continuous wavelet transform-based modulus maxima approach for the walk error compensation of pulsed time-of-flight laser rangefinders[J]. Optik, 127, 1980-1987(2016).

    [20] Kontorov S M, Cherepenin V A, Kulagin V V et al. Signal spectral-interval estimation in fast photonic analog-to-digital converters[C], 967-972(2018).

    [21] Rostami M S, Saberi M, Maymandi-Nejad M et al. A low-power time-to-digital converter for sensor interface circuits[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 67, 2853-2857(2020).

    [22] Yan P H, Chen D R, Li X G et al. High precision time interval measurement method applied to laser radar[J]. Instrument Technique and Sensor, 104-107(2017).

    [23] Xu X B, Zhang H, Luo M Z et al. Research on target echo characteristics and ranging accuracy for laser radar[J]. Infrared Physics & Technology, 96, 330-339(2019).

    [24] Huang M S, Liu X C, Ma P. Periodic error compensation of pulsed time-of-flight laser ranging system[J]. Infrared and Laser Engineering, 47, 0317004(2018).

    [25] Zheng H, Ma R, Liu M L et al. A linear dynamic range receiver with timing discrimination for pulsed TOF imaging LADAR application[J]. IEEE Transactions on Instrumentation and Measurement, 67, 2684-2691(2018).

    [26] Pi Y H, Wang C Z, Song Y J et al. Ultra-low timing jitter femtosecond laser technology (Invited)[J]. Infrared and Laser Engineering, 49, 20201058(2020).

    [27] Jansson J P, Koskinen V, Mantyniemi A et al. A multichannel high-precision CMOS time-to-digital converter for laser-scanner-based perception systems[J]. IEEE Transactions on Instrumentation and Measurement, 61, 2581-2590(2012).

    [28] Chen L Y, Yang C K K. A 19-GHz pulsed-coherent ToF receiver with 40-μm precision for laser ranging systems[C], 191-194(2019).

    [29] Tancock S, Arabul E, Dahnoun N. A review of new time-to-digital conversion techniques[J]. IEEE Transactions on Instrumentation and Measurement, 68, 3406-3417(2019).

    [30] Machado R, Cabral J, Alves F S. Recent developments and challenges in FPGA-based time-to-digital converters[J]. IEEE Transactions on Instrumentation and Measurement, 68, 4205-4221(2019).

    [31] Kim J, Kim Y H, Kim K et al. A hybrid-domain two-step time-to-digital converter using a switch-based time-to-voltage converter and SAR ADC[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 62, 631-635(2015).

    [32] Jansson J P, Keränen P, Jahromi S et al. Enhancing nutt-based time-to-digital converter performance with internal systematic averaging[J]. IEEE Transactions on Instrumentation and Measurement, 69, 3928-3935(2019).

    [33] Razmdideh R, Saneei M. All-digital delay line-based time difference amplifier in 65 nm CMOS technology[J]. IET Circuits, Devices & Systems, 13, 421-427(2019).

    [34] Khalatpour A, Paulsen A K, Deimert C et al. High-power portable terahertz laser systems[J]. Nature Photonics, 15, 16-20(2021).

    [35] Zhang L M, Zhang Y, Zhao X. Study on flight time measurement laser ranging sensor based on TDC[J]. Transducer and Microsystem Technologies, 30, 71-74(2011).

    [36] Wang Y G, Cao Q, Liu C. A multi-chain merged tapped delay line for high precision time-to-digital converters in FPGAs[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 96-100(2018).

    [37] Li B, Meng L F, Li J et al. High precision time interval measurement method of detecting LSS-UAV[J]. Science Technology and Engineering, 17, 248-253(2017).

    [38] Li R Y, Zhang C X, Wang P et al. Design of pulsed laser ranging system based on TDC-GP22[J]. Semiconductor Optoelectronics, 39, 848-852(2018).

    [39] Lusardi N, Garzetti F, Geraci A. The role of sub-interpolation for delay-line time-to-digital converters in FPGA devices[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 916, 204-214(2019).

    [40] Lee D J, Yuan F, Khan G. Digitally interpolated pre-skewed delay-line digital-to-time converter with minimum nonlinearity and latency[C], 892-895(2019).

    [41] Gammoh K, Peterson C K, Penry D A et al. Linearity theory of stochastic phase-interpolation time-to-digital converter[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 67, 4348-4359(2020).

    [42] Zhao X, Wang D, Zhang H et al. Research progress on key technologies of pulsed semiconductor laser ranging[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 39, 9-15(2016).

    [43] Wang H Z, Xin D S, Zhang J J et al. Pulsed laser ranging time-interval measuring technique[J]. High Power Laser and Particle Beams, 22, 1751-1754(2010).

    [44] Baharmast A, Ruotsalainen T, Kostamovaara J. A low noise, wide dynamic range TOF laser radar receiver based on pulse shaping techniques[C], 1-5(2018).

    [45] Szplet R, Jachna Z, Kwiatkowski P et al. A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines[J]. Measurement Science and Technology, 24, 035904(2013).

    [46] Li K Y, Zheng H X, Mo B et al. A new circuit topology for high-performance pulsed time-of- flight laser radar receivers[C], 78-83(2018).

    [47] Kurtti S, Kostamovaara J. An integrated laser radar receiver channel utilizing a time-domain walk error compensation scheme[J]. IEEE Transactions on Instrumentation and Measurement, 60, 146-157(2011).

    [48] Hong C, Kim S H, Kim J H et al. A linear-mode LiDAR sensor using a multi-channel CMOS transimpedance amplifier array[J]. IEEE Sensors Journal, 18, 7032-7040(2018).

    [49] Wang J, Zheng T, Lei P et al. Study on deep learning in radar[J]. Journal of Radars, 7, 395-411(2018).

    [50] Hu S J, He Y, Yu J Y et al. Method for solving echo time of pulse laser ranging based on deep learning[J]. Chinese Journal of Lasers, 46, 1010001(2019).

    [51] Yang J G, Thompson J, Huang X T et al. Segmented reconstruction for compressed sensing SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 4214-4225(2013).

    [52] Zhang S L, Chen S Y, Xi F et al. Fast reconstruction of moving target echoes based on sub-Nyquist radar[J]. Acta Electronica Sinica, 47, 2098-2107(2019).

    [53] Qiang X M. Targets detection and tracking in wideband radar[D](2018).

    [54] Huang M S, Li J, Tian F. Timing detection based on resonance for a pulsed time-of-flight laser range finder[J]. Nuclear Electronics & Detection Technology, 32, 874-876, 899(2012).

    [55] Jiang B, Huang M S, Guan Z H. Pulsed laser ranging method using cyclostationary random sequences[J]. Chinese Journal of Lasers, 47, 0101004(2020).

    [56] Quan Y H, Wu Y J, Li Y C et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 12, 348-352(2018).

    [57] Wu Q H, Zhao F, Ai X et al. Compressive-sensing-based simultaneous polarimetric HRRP reconstruction with random OFDM pair radar signal[J]. IEEE Access, 6, 37837-37849(2018).

    [58] Jiang Y S, Karpf S, Jalali B. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera[J]. Nature Photonics, 14, 14-18(2020).

    [59] Huang M S, Ma P, Liu X C. Multi-pulse laser ranging method for pre-detection with high frequency resonance[J]. Acta Physica Sinica, 67, 20172079(2018).

    [60] Wu J Z. Research on time jitter processing in high speed real-time sampling[D](2019).

    [61] Chua S, Guo N Q, Tan C et al. Improved range estimation model for three-dimensional (3D) range gated reconstruction[J]. Sensors, 17, 2031(2017).

    [62] Hallman L W, Jahromi S, Jansson J P et al. On two-dimensional range finding using a ~1 nJ/~100 ps laser diode transmitter and a CMOS SPAD matrix[J]. IEEE Photonics Journal, 10, 1-12(2018).

    [63] Cui Y, Gao Y Q, Zhao Z X et al. High precision and large range timing jitter measurement and control of ultrashort laser pulses[J]. IEEE Photonics Technology Letters, 28, 2215-2217(2016).

    [64] Koskin E, Bisiaux P, Galayko D et al. Jitter optimisation in a generalised all-digital phase-locked loop model[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 68, 77-81(2021).

    [65] Mao Y X, Lu Z G, Liu J R et al. Pulse timing jitter estimated from optical phase noise in mode-locked semiconductor quantum dash lasers[J]. Journal of Lightwave Technology, 38, 4787-4793(2020).

    [66] Kwon K, Yoon J H, Jeon Y et al. An electronic dispersion compensation transceiver for 10-and 28-Gb/s directly modulated lasers-based optical links[J]. IEEE Journal of Solid-State Circuits, 54, 55-64(2019).

    [67] Zhu W, Rui X T. Adaptive control of a piezo-actuated steering mirror to restrain laser-beam jitter[J]. IEEE Transactions on Industrial Electronics, 66, 7873-7881(2019).

    [68] Yao Z Y, Mauldin T, Xu Z Y et al. An integrated OFDR system using combined swept-laser linearization and phase error compensation[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-8(2021).

    [69] Fang B, Zhong S C, Zhang Q K et al. Full-range line-field optical coherence tomography for high-accuracy measurements of optical lens[J]. IEEE Transactions on Instrumentation and Measurement, 69, 7180-7190(2020).

    Xu Zhao, Zhong Su, Lianpeng Li, Fuchao Liu, Ning Liu, Hao Yu. Research Progress of Error Compensation Technology for Pulsed Laser Time-of-Flight Ranging[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2300001
    Download Citation