• Opto-Electronic Engineering
  • Vol. 47, Issue 9, 190734 (2020)
Zhang Yufan1、*, Li Xin1、2, Lv Weichao1、2, Chen Jiawang2, Zheng Minhui3, and Xu Jing1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190734 Cite this Article
    Zhang Yufan, Li Xin, Lv Weichao, Chen Jiawang, Zheng Minhui, Xu Jing. Link structure of underwater wireless optical communication and progress on performance optimization[J]. Opto-Electronic Engineering, 2020, 47(9): 190734 Copy Citation Text show less
    References

    [1] Vedachalam N, Ramesh R, Jyothi V B N, et al. Autonomous underwater vehicles-challenging developments and technologi-cal maturity towards strategic swarm robotics systems[J]. Marine Georesources & Geotechnology, 2019, 37(5): 525–538.

         Vedachalam N, Ramesh R, Jyothi V B N, et al. Autonomous underwater vehicles-challenging developments and technologi-cal maturity towards strategic swarm robotics systems[J]. Marine Georesources & Geotechnology, 2019, 37(5): 525–538.

    [2] Saeed N, Celik A, Al-Naffouri T Y, et al. Underwater optical wireless communications, networking, and localization: a sur-vey[J]. Ad Hoc Networks, 2019, 94: 101935.

         Saeed N, Celik A, Al-Naffouri T Y, et al. Underwater optical wireless communications, networking, and localization: a sur-vey[J]. Ad Hoc Networks, 2019, 94: 101935.

    [3] Stojanovic M, Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84–89.

         Stojanovic M, Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84–89.

    [4] Au W W, Nachtigall P E, Pawloski J L. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales[J]. The Journal of the Acoustical Society of America, 1997, 101(5): 2973–2977.

         Au W W, Nachtigall P E, Pawloski J L. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales[J]. The Journal of the Acoustical Society of America, 1997, 101(5): 2973–2977.

    [5] Zeng Z Q, Fu S, Zhang H H, et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 204–238.

         Zeng Z Q, Fu S, Zhang H H, et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 204–238.

    [6] Strand M P. Imaging model for underwater range-gated imaging systems[J]. Proceedings of SPIE, 1991, 1537: 151–160.

         Strand M P. Imaging model for underwater range-gated imaging systems[J]. Proceedings of SPIE, 1991, 1537: 151–160.

    [7] Tang S J, Dong Y H, Zhang X D. Impulse response modeling for underwater wireless optical communication links[J]. IEEE Transactions on Communications, 2014, 62(1): 226–234.

         Tang S J, Dong Y H, Zhang X D. Impulse response modeling for underwater wireless optical communication links[J]. IEEE Transactions on Communications, 2014, 62(1): 226–234.

    [8] Karp S. Optical communications between underwater and above surface (Satellite) terminals[J]. IEEE Transactions on Commu-nications, 1976, 24(1): 66–81.

         Karp S. Optical communications between underwater and above surface (Satellite) terminals[J]. IEEE Transactions on Commu-nications, 1976, 24(1): 66–81.

    [9] Longacre J R, Freeman D E, Snow J B. High-data-rate under-water laser communications[J]. Proceedings of SPIE, 1990, 1302: 433–439.

         Longacre J R, Freeman D E, Snow J B. High-data-rate under-water laser communications[J]. Proceedings of SPIE, 1990, 1302: 433–439.

    [10] Snow J B, Flatley J P, Freeman D E, et al. Underwater propaga-tion of high-data-rate laser communications pulses[J]. Proceed-ings of SPIE, 1992, 1750: 419–427.

         Snow J B, Flatley J P, Freeman D E, et al. Underwater propaga-tion of high-data-rate laser communications pulses[J]. Proceed-ings of SPIE, 1992, 1750: 419–427.

    [11] Hanson F, Radic S. High bandwidth underwater optical commu-nication[J]. Applied Optics, 2008, 47(2): 277–283.

         Hanson F, Radic S. High bandwidth underwater optical commu-nication[J]. Applied Optics, 2008, 47(2): 277–283.

    [12] Lu D L, Kan J J, Fullerton E E, et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials[J]. Nature Nanotechnology, 2014, 9(1): 48–53.

         Lu D L, Kan J J, Fullerton E E, et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials[J]. Nature Nanotechnology, 2014, 9(1): 48–53.

    [13] Shen C, Guo Y J, Oubei H M, et al. 20-meter underwater wire-less optical communication link with 1.5 Gbps data rate[J]. Op-tics Express, 2016, 24(22): 25502–25509.

         Shen C, Guo Y J, Oubei H M, et al. 20-meter underwater wire-less optical communication link with 1.5 Gbps data rate[J]. Op-tics Express, 2016, 24(22): 25502–25509.

    [14] Xu J, Song Y H, Yu X Y, et al. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser[J]. Optics Express, 2016, 24(8): 8097–8109.

         Xu J, Song Y H, Yu X Y, et al. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser[J]. Optics Express, 2016, 24(8): 8097–8109.

    [15] Lu H H, Li C Y, Lin H H, et al. An 8 m/9.6 Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 2016, 8(5): 7906107.

         Lu H H, Li C Y, Lin H H, et al. An 8 m/9.6 Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 2016, 8(5): 7906107.

    [16] Kong M W, LvWC, Ali T, et al. 10-m 9.51-Gb/s RGB laser dio-des-based WDM underwater wireless optical communication[J]. Optics Express, 2017, 25(17): 20829–20834.

         Kong M W, LvWC, Ali T, et al. 10-m 9.51-Gb/s RGB laser dio-des-based WDM underwater wireless optical communication[J]. Optics Express, 2017, 25(17): 20829–20834.

    [17] Huang Y F, Tsai C T, Chi Y C, et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmis-sion[J]. Journal of Lightwave Technology, 2018, 36(9): 1739–1745.

         Huang Y F, Tsai C T, Chi Y C, et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmis-sion[J]. Journal of Lightwave Technology, 2018, 36(9): 1739–1745.

    [18] Li C Y, Lu H H, Tsai W S, et al. 16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques[J]. Optics Express, 2017, 25(10): 11598–11605.

         Li C Y, Lu H H, Tsai W S, et al. 16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques[J]. Optics Express, 2017, 25(10): 11598–11605.

    [19] Liu X Y, Yi S Y, Zhou X L, et al. 34.5 m underwater optical wire-less communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22): 27937–27947.

         Liu X Y, Yi S Y, Zhou X L, et al. 34.5 m underwater optical wire-less communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22): 27937–27947.

    [20] Fei C, Hong X J, Zhang G W, et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equaliza-tion[J]. Optics Express, 2018, 26(26): 34060–34069.

         Fei C, Hong X J, Zhang G W, et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equaliza-tion[J]. Optics Express, 2018, 26(26): 34060–34069.

    [21] Fei C, Zhang J W, Zhang G W, et al. Demonstration of 15-M 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization[J]. Journal of Lightwave Technology, 2018, 36(3): 728–734.

         Fei C, Zhang J W, Zhang G W, et al. Demonstration of 15-M 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization[J]. Journal of Lightwave Technology, 2018, 36(3): 728–734.

    [22] Hong X J, Fei C, Zhang G W, et al. Discrete multitone transmis-sion for underwater optical wireless communication system us-ing probabilistic constellation shaping to approach channel ca-pacity limit[J]. Optics Letters, 2019, 44(3): 558–561.

         Hong X J, Fei C, Zhang G W, et al. Discrete multitone transmis-sion for underwater optical wireless communication system us-ing probabilistic constellation shaping to approach channel ca-pacity limit[J]. Optics Letters, 2019, 44(3): 558–561.

    [23] Lu C H, Wang J M, Li S B, et al. 60m/2.5Gbps underwater opti-cal wireless communication with NRZ-OOK modulation and dig-ital nonlinear equalization[C]//Proceedings of 2019 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2019: 1–2.

         Lu C H, Wang J M, Li S B, et al. 60m/2.5Gbps underwater opti-cal wireless communication with NRZ-OOK modulation and dig-ital nonlinear equalization[C]//Proceedings of 2019 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2019: 1–2.

    [24] WangJ M, Lu C H, Li S B, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171–12181.

         WangJ M, Lu C H, Li S B, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171–12181.

    [25] Bluecomm 100-wireless underwater optical communica-tion[EB/OL]. https://www.sonardyne.com/product/bluecomm-underwater-optical-communication-system/.

         Bluecomm 100-wireless underwater optical communica-tion[EB/OL]. https://www.sonardyne.com/product/bluecomm-underwater-optical-communication-system/.

    [26] Baykal Y. Scintillations of LED sources in oceanic turbulence[J]. Applied Optics, 2016, 55(31): 8860–8863.

         Baykal Y. Scintillations of LED sources in oceanic turbulence[J]. Applied Optics, 2016, 55(31): 8860–8863.

    [27] Shi J Y, Zhu X, Wang F M, et al. Net data rate of 14.6 Gbit/s underwater VLC utilizing silicon substrate common-anode five primary colors LED[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, 2019: 1–3.

         Shi J Y, Zhu X, Wang F M, et al. Net data rate of 14.6 Gbit/s underwater VLC utilizing silicon substrate common-anode five primary colors LED[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, 2019: 1–3.

    [28] Wang F M, Liu Y F, Jiang F Y, et al. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception[J]. Optics Communications, 2018, 425: 106–112.

         Wang F M, Liu Y F, Jiang F Y, et al. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception[J]. Optics Communications, 2018, 425: 106–112.

    [29] Tian P F, Liu X Y, Yi S Y, et al. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. Optics Express, 2017, 25(2): 1193–1201.

         Tian P F, Liu X Y, Yi S Y, et al. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. Optics Express, 2017, 25(2): 1193–1201.

    [30] Xu J, Kong MW, Lin A B, et al. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J]. Optics Letters, 2017, 42(9): 1664–1667.

         Xu J, Kong MW, Lin A B, et al. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J]. Optics Letters, 2017, 42(9): 1664–1667.

    [31] Li C Y, Lu H H, TsaiWS, et al. A 5 m/25 Gbps underwater wire-less optical communication system[J]. IEEE Photonics Journal, 2018, 10(3): 7904909.

         Li C Y, Lu H H, TsaiWS, et al. A 5 m/25 Gbps underwater wire-less optical communication system[J]. IEEE Photonics Journal, 2018, 10(3): 7904909.

    [32] Kong M W, Chen Y F, Sarwar R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3): 3087–3097.

         Kong M W, Chen Y F, Sarwar R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3): 3087–3097.

    [33] Zhuang B, Li C, Wu N, et al. First demonstration of 400Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2017: 1–2.

         Zhuang B, Li C, Wu N, et al. First demonstration of 400Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2017: 1–2.

    [34] Sui M H, Zhou Z G. The modified PPM modulation for underwa-ter wireless optical communication[C]//Proceedings of 2009 In-ternational Conference on Communication Software and Net-works, Macau, China, 2009: 173–177.

         Sui M H, Zhou Z G. The modified PPM modulation for underwa-ter wireless optical communication[C]//Proceedings of 2009 In-ternational Conference on Communication Software and Net-works, Macau, China, 2009: 173–177.

    [35] Hu S, Mi L, Zhou T H, et al. 35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM[J]. Optics Express, 2018, 26(17): 21685–21699.

         Hu S, Mi L, Zhou T H, et al. 35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM[J]. Optics Express, 2018, 26(17): 21685–21699.

    [37] Mi X L, Dong Y H. Polarized digital pulse interval modulation for underwater wireless optical communications[C]//Proceedings of OCEANS 2016 -Shanghai, Shanghai, China, 2016: 1–4.

         Mi X L, Dong Y H. Polarized digital pulse interval modulation for underwater wireless optical communications[C]//Proceedings of OCEANS 2016 -Shanghai, Shanghai, China, 2016: 1–4.

    [39] Cox W C, Simpson J A, Domizioli C P, et al. An underwater optical communication system implementing Reed-Solomon channel coding[C]//Proceedings of OCEANS 2008, Quebec City, QC, Canada, 2008: 1–6.

         Cox W C, Simpson J A, Domizioli C P, et al. An underwater optical communication system implementing Reed-Solomon channel coding[C]//Proceedings of OCEANS 2008, Quebec City, QC, Canada, 2008: 1–6.

    [40] Mattoussi F, Khalighi M A, Bourennane S. Improving the per-formance of underwater wireless optical communication links by channel coding[J]. Applied Optics, 2018, 57(9): 2115–2120.

         Mattoussi F, Khalighi M A, Bourennane S. Improving the per-formance of underwater wireless optical communication links by channel coding[J]. Applied Optics, 2018, 57(9): 2115–2120.

    [41] Campbell J C. Recent advances in telecommunications ava-lanche photodiodes[J]. Journal of Lightwave Technology, 2007, 25(1): 109–121.

         Campbell J C. Recent advances in telecommunications ava-lanche photodiodes[J]. Journal of Lightwave Technology, 2007, 25(1): 109–121.

    [42] Cova S, Ghioni M, Lacaita A, et al. Avalanche photodiodes and quenching circuits for single-photon detection[J]. Applied Optics, 1996, 35(12): 1956–1976.

         Cova S, Ghioni M, Lacaita A, et al. Avalanche photodiodes and quenching circuits for single-photon detection[J]. Applied Optics, 1996, 35(12): 1956–1976.

    [43] Zhang Z J, Zhao Y, Zhang J D, et al. Ranging accuracy im-provement of time-correlated signal-photon counting lidar[J]. Proceedings of SPIE, 2017, 10605: 106050C.

         Zhang Z J, Zhao Y, Zhang J D, et al. Ranging accuracy im-provement of time-correlated signal-photon counting lidar[J]. Proceedings of SPIE, 2017, 10605: 106050C.

    [44] Li C, Wang B K, Wang P L, et al. Generation and transmission of 745Mb/s ofdm signal using a single commercial blue LED and an analog post-equalizer for underwater optical wireless com-munications[C]//Proceedings of 2016 Asia Communications and Photonics Conference, Wuhan, China, 2016: 1–3.

         Li C, Wang B K, Wang P L, et al. Generation and transmission of 745Mb/s ofdm signal using a single commercial blue LED and an analog post-equalizer for underwater optical wireless com-munications[C]//Proceedings of 2016 Asia Communications and Photonics Conference, Wuhan, China, 2016: 1–3.

    [45] Zhang ZY, LaiY J, Lv J L, et al. Over 700 MHz –3 dB bandwidth UOWC system based on blue HV-LED with T-bridge pre-equalizer[J]. IEEE Photonics Journal, 2019, 11(3): 7903812.

         Zhang ZY, LaiY J, Lv J L, et al. Over 700 MHz –3 dB bandwidth UOWC system based on blue HV-LED with T-bridge pre-equalizer[J]. IEEE Photonics Journal, 2019, 11(3): 7903812.

    [46] Ren Y X, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. Scientific Reports, 2016, 6: 33306.

         Ren Y X, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. Scientific Reports, 2016, 6: 33306.

    [47] Mobley C D. Light and Water: Radiative Transfer in Natural Waters[M]. New York: Academic Press, 1994.

         Mobley C D. Light and Water: Radiative Transfer in Natural Waters[M]. New York: Academic Press, 1994.

    [48] Petzold T J. Volume Scattering Functions for Selected Ocean Waters[M]. San Diego: Scripps Institution of Oceanography, 1972.

         Petzold T J. Volume Scattering Functions for Selected Ocean Waters[M]. San Diego: Scripps Institution of Oceanography, 1972.

    [49] Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical commu-nications links[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 513–521.

         Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical commu-nications links[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 513–521.

    [50] Jaruwatanadilok S. Underwater wireless optical communication channel modeling and performance evaluation using vector ra-diative transfer theory[J]. IEEE Journal on Selected areas in Communications, 2008, 26(9): 1620–1627.

         Jaruwatanadilok S. Underwater wireless optical communication channel modeling and performance evaluation using vector ra-diative transfer theory[J]. IEEE Journal on Selected areas in Communications, 2008, 26(9): 1620–1627.

    [51] Gabriel C, Khalighi M A, Bourennane S, et al. Monte-carlo-based channel characterization for underwater optical communication systems[J]. IEEE/OSA Journal of Optical Communications and Networking, 2013, 5(1): 1–12.

         Gabriel C, Khalighi M A, Bourennane S, et al. Monte-carlo-based channel characterization for underwater optical communication systems[J]. IEEE/OSA Journal of Optical Communications and Networking, 2013, 5(1): 1–12.

    [52] Haltrin V I. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater[J]. Applied Optics, 2002, 41(6): 1022–1028.

         Haltrin V I. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater[J]. Applied Optics, 2002, 41(6): 1022–1028.

    [53] Sahu S K, Shanmugam P. Semi-analytical modeling and para-meterization of particulates-in-water phase function for forward angles[J]. Optics Express, 2015, 23(17): 22291–22307.

         Sahu S K, Shanmugam P. Semi-analytical modeling and para-meterization of particulates-in-water phase function for forward angles[J]. Optics Express, 2015, 23(17): 22291–22307.

    [54] Sahu S K, Shanmugam P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system[J]. Optics Communications, 2018, 408: 3–14.

         Sahu S K, Shanmugam P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system[J]. Optics Communications, 2018, 408: 3–14.

    [55] Vali Z, Gholami A, Ghassemlooy Z, et al. Experimental study of the turbulence effect on underwater optical wireless communi-cations[J]. Applied Optics, 2018, 57(28): 8314–8319.

         Vali Z, Gholami A, Ghassemlooy Z, et al. Experimental study of the turbulence effect on underwater optical wireless communi-cations[J]. Applied Optics, 2018, 57(28): 8314–8319.

    [56] Ooi B S, Sun X B, Alkhazragi O, et al. Visible diode lasers for high bitrate underwater wireless optical communica-tions[C]//Proceedings of Optical Fiber Communication Confe-rence 2019, San Diego, CA, USA, 2019.

         Ooi B S, Sun X B, Alkhazragi O, et al. Visible diode lasers for high bitrate underwater wireless optical communica-tions[C]//Proceedings of Optical Fiber Communication Confe-rence 2019, San Diego, CA, USA, 2019.

    [57] Yi X, Li Z, Liu Z J. Underwater optical communication perfor-mance for laser beam propagation through weak oceanic tur-bulence[J]. Applied Optics, 2015, 54(6): 1273–1278.

         Yi X, Li Z, Liu Z J. Underwater optical communication perfor-mance for laser beam propagation through weak oceanic tur-bulence[J]. Applied Optics, 2015, 54(6): 1273–1278.

    [58] Oubei H M, Zedini E, ElAfandy R T, et al. Efficient weibull channel model for salinity induced turbulent underwater wireless optical communications[C]//Proceedings of 2017 Op-to-Electronics and Communications Conference (OECC) and Photonics Global Conference, Singapore, Singapore, 2017: 1–2.

         Oubei H M, Zedini E, ElAfandy R T, et al. Efficient weibull channel model for salinity induced turbulent underwater wireless optical communications[C]//Proceedings of 2017 Op-to-Electronics and Communications Conference (OECC) and Photonics Global Conference, Singapore, Singapore, 2017: 1–2.

    [59] Oubei H M, Zedini E, ElAfandy R T, et al. Simple statistical channel model for weak temperature-induced turbulence in un-derwater wireless optical communication systems[J]. Optics Letters, 2017, 42(13): 2455–2458.

         Oubei H M, Zedini E, ElAfandy R T, et al. Simple statistical channel model for weak temperature-induced turbulence in un-derwater wireless optical communication systems[J]. Optics Letters, 2017, 42(13): 2455–2458.

    [60] Oubei H M, Duran J R, Janjua B, et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. Optics Ex-press, 2015, 23(18): 23302–23309.

         Oubei H M, Duran J R, Janjua B, et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. Optics Ex-press, 2015, 23(18): 23302–23309.

    [61] Xu J,Lin A B, Yu X Y, et al. Underwater laser communication using an OFDM-modulated 520-nm laser diode[J]. IEEE Pho-tonics Technology Letters, 2016, 28(20): 2133–2136.

         Xu J,Lin A B, Yu X Y, et al. Underwater laser communication using an OFDM-modulated 520-nm laser diode[J]. IEEE Pho-tonics Technology Letters, 2016, 28(20): 2133–2136.

    [62] Sullivan S A. Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum[J]. Journal of the Optical Society of America, 1963, 53(8): 962–968.

         Sullivan S A. Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum[J]. Journal of the Optical Society of America, 1963, 53(8): 962–968.

    [63] Gilbert G D, Stoner T R, Jernigan J L. Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser[J]. Proceedings of SPIE, 1966, 7: 8–14.

         Gilbert G D, Stoner T R, Jernigan J L. Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser[J]. Proceedings of SPIE, 1966, 7: 8–14.

    [64] Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214–233.

         Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214–233.

    [65] Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 2016, 24(9): 9794–9805.

         Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 2016, 24(9): 9794–9805.

    [67] Wang C, Yu H Y, Zhu Y J, et al. Experimental study on SPAD-based VLC systems with an LED status indicator[J]. Op-tics Express, 2017, 25(23): 28783–28793.

         Wang C, Yu H Y, Zhu Y J, et al. Experimental study on SPAD-based VLC systems with an LED status indicator[J]. Op-tics Express, 2017, 25(23): 28783–28793.

    [68] Wang C, Yu H Y, Zhu Y J. A long distance underwater visible light communication system with single photon avalanche di-ode[J]. IEEE Photonics Journal, 2016, 8(5): 7906311.

         Wang C, Yu H Y, Zhu Y J. A long distance underwater visible light communication system with single photon avalanche di-ode[J]. IEEE Photonics Journal, 2016, 8(5): 7906311.

    [69] WangJ L, Yang X Q, Lv W C, et al. Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation[J]. Optics Communications, 2019, 451: 181–185.

         WangJ L, Yang X Q, Lv W C, et al. Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation[J]. Optics Communications, 2019, 451: 181–185.

    [70] Hamza T, Khalighi M A, Bourennane S, et al. On the suitability of employing silicon photomultipliers for underwater wireless opti-cal communication links[C]//Proceedings of the 2016 10th In-ternational Symposium on Communication Systems, Networks and Digital Signal Processing, Prague, Czech Republic, 2016: 1–5.

         Hamza T, Khalighi M A, Bourennane S, et al. On the suitability of employing silicon photomultipliers for underwater wireless opti-cal communication links[C]//Proceedings of the 2016 10th In-ternational Symposium on Communication Systems, Networks and Digital Signal Processing, Prague, Czech Republic, 2016: 1–5.

    [71] Khalighi M A, Hamza T, Bourennane S, et al. Underwater wire-less optical communications using silicon photo-multipliers[J]. IEEE Photonics Journal, 2017, 9(4): 7905310.

         Khalighi M A, Hamza T, Bourennane S, et al. Underwater wire-less optical communications using silicon photo-multipliers[J]. IEEE Photonics Journal, 2017, 9(4): 7905310.

    [72] Shen J N, Wang J L, Yu C Y, et al. Single LED-based 46-m underwater wireless optical communication enabled by a mul-ti-pixel photon counter with digital output[J]. Optics Communica-tions, 2019, 438: 78–82.

         Shen J N, Wang J L, Yu C Y, et al. Single LED-based 46-m underwater wireless optical communication enabled by a mul-ti-pixel photon counter with digital output[J]. Optics Communica-tions, 2019, 438: 78–82.

    [73] Shen J N, Wang J L, Chen X, et al. Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter[J]. Optics Express, 2018, 26(18): 23565–23571.

         Shen J N, Wang J L, Chen X, et al. Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter[J]. Optics Express, 2018, 26(18): 23565–23571.

    [75] Tang S J, Dong Y H, Zhang X D. On link misalignment for un-derwater wireless optical communications[J]. IEEE Communica-tions Letters, 2012, 16(10): 1688–1690.

         Tang S J, Dong Y H, Zhang X D. On link misalignment for un-derwater wireless optical communications[J]. IEEE Communica-tions Letters, 2012, 16(10): 1688–1690.

    [76] Zhang H H, Dong Y H. Link misalignment for underwater wire-less optical communications[C]//Proceedings of 2015 Advances in Wireless and Optical Communications, Riga, Latvia, 2015: 215–218.

         Zhang H H, Dong Y H. Link misalignment for underwater wire-less optical communications[C]//Proceedings of 2015 Advances in Wireless and Optical Communications, Riga, Latvia, 2015: 215–218.

    [77] Huang X, Yang F, Song J. Hybrid LD and LED-based underwater optical communication: state-of-the-art, opportunities, chal-lenges, and trends[J]. Chinese Optics Letters, 2019, 17(10): 100002.

         Huang X, Yang F, Song J. Hybrid LD and LED-based underwater optical communication: state-of-the-art, opportunities, chal-lenges, and trends[J]. Chinese Optics Letters, 2019, 17(10): 100002.

    [78] Cai C K, Zhao Y F, Zhang J Y, et al. Experimental demonstration of an underwater wireless optical link employing orbital angular momentum (OAM) modes with fast auto-alignment sys-tem[C]//Proceedings of Optical Fiber Communication Confe-rence 2019, San Diego, CA, USA, 2019: 1–3.

         Cai C K, Zhao Y F, Zhang J Y, et al. Experimental demonstration of an underwater wireless optical link employing orbital angular momentum (OAM) modes with fast auto-alignment sys-tem[C]//Proceedings of Optical Fiber Communication Confe-rence 2019, San Diego, CA, USA, 2019: 1–3.

    [79] Kong M W, Sun B, Sarwar R, et al. Underwater wireless optical communication using a lens-free solar panel receiver[J]. Optics Communications, 2018, 426: 94–98.

         Kong M W, Sun B, Sarwar R, et al. Underwater wireless optical communication using a lens-free solar panel receiver[J]. Optics Communications, 2018, 426: 94–98.

    [80] Kong M W, Lin J M, Kang C H, et al. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells[J]. Optics Express, 2019, 27(24): 34542–34551.

         Kong M W, Lin J M, Kang C H, et al. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells[J]. Optics Express, 2019, 27(24): 34542–34551.

    [81] Zhang H H, Dong Y H, Hui L K. On capacity of downlink under-water wireless optical MIMO systems with random sea sur-face[J]. IEEE Communications Letters, 2015, 19(12): 2166–2169.

         Zhang H H, Dong Y H, Hui L K. On capacity of downlink under-water wireless optical MIMO systems with random sea sur-face[J]. IEEE Communications Letters, 2015, 19(12): 2166–2169.

    [82] Zhang H H, Dong Y H. Impulse response modeling for general underwater wireless optical MIMO links[J]. IEEE Communica-tions Magazine, 2016, 54(2): 56–61.

         Zhang H H, Dong Y H. Impulse response modeling for general underwater wireless optical MIMO links[J]. IEEE Communica-tions Magazine, 2016, 54(2): 56–61.

    [83] Jamali M V, Salehi J A. On the BER of multiple-input mul-tiple-output underwater wireless optical communication sys-tems[C]//Proceedings of the 2015 4th International Workshop on Optical Wireless Communications, Istanbul, Turkey, 2015: 26–30.

         Jamali M V, Salehi J A. On the BER of multiple-input mul-tiple-output underwater wireless optical communication sys-tems[C]//Proceedings of the 2015 4th International Workshop on Optical Wireless Communications, Istanbul, Turkey, 2015: 26–30.

    [84] Jamali M V, Nabavi P, Salehi J A. MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8223–8237.

         Jamali M V, Nabavi P, Salehi J A. MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8223–8237.

    [85] Jamali M V, Salehi J A, Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme[J]. IEEE Transactions on Communica-tions, 2017, 65(3): 1176–1192.

         Jamali M V, Salehi J A, Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme[J]. IEEE Transactions on Communica-tions, 2017, 65(3): 1176–1192.

    [86] Cossu G, Sturniolo A, Messa A, et al. Sea-trial of optical ethernet modems for underwater wireless communications[J]. Journal of Lightwave Technology, 2018, 36(23): 5371–5380.

         Cossu G, Sturniolo A, Messa A, et al. Sea-trial of optical ethernet modems for underwater wireless communications[J]. Journal of Lightwave Technology, 2018, 36(23): 5371–5380.

    [87] Sawa T, Nishimura N, Tojo K, et al. Practical performance and prospect of underwater optical wireless communica-tion:——results of optical characteristic measurement at visible light band under water and communication tests with the proto-type modem in the sea[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2019, E102-A(1): 156–167.

         Sawa T, Nishimura N, Tojo K, et al. Practical performance and prospect of underwater optical wireless communica-tion:——results of optical characteristic measurement at visible light band under water and communication tests with the proto-type modem in the sea[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2019, E102-A(1): 156–167.

    [88] Akhoundi F, Salehi J A, Tashakori A. Cellular underwater wire-less optical CDMA network: performance analysis and imple-mentation concepts[J]. IEEE Transactions on Communications, 2015, 63(3): 882–891.

         Akhoundi F, Salehi J A, Tashakori A. Cellular underwater wire-less optical CDMA network: performance analysis and imple-mentation concepts[J]. IEEE Transactions on Communications, 2015, 63(3): 882–891.

    [89] Vavoulas A, Sandalidis H G, Varoutas D. Underwater optical wireless networks: ak-connectivity analysis[J]. IEEE Journal of Oceanic Engineering, 2014, 39(4): 801–809.

         Vavoulas A, Sandalidis H G, Varoutas D. Underwater optical wireless networks: ak-connectivity analysis[J]. IEEE Journal of Oceanic Engineering, 2014, 39(4): 801–809.

    [90] Jamali M V, Akhoundi F, Salehi J A. Performance characteriza-tion of relay-assisted wireless optical CDMA networks in turbu-lent underwater channel[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 4104–4116.

         Jamali M V, Akhoundi F, Salehi J A. Performance characteriza-tion of relay-assisted wireless optical CDMA networks in turbu-lent underwater channel[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 4104–4116.

    [91] Jamali M V, Chizari A, Salehi J A. Performance analysis of mul-ti-hop underwater wireless optical communication systems[J]. IEEE Photonics Technology Letters, 2017, 29(5): 462–465.

         Jamali M V, Chizari A, Salehi J A. Performance analysis of mul-ti-hop underwater wireless optical communication systems[J]. IEEE Photonics Technology Letters, 2017, 29(5): 462–465.

    [92] Celik A, Saeed N, Al-Naffouri T Y, et al. Modeling and perfor-mance analysis of multihop underwater optical wireless sensor networks[C]//Proceedings of 2018 IEEE Wireless Communica-tions and Networking Conference, Barcelona, Spain, 2018: 1–6.

         Celik A, Saeed N, Al-Naffouri T Y, et al. Modeling and perfor-mance analysis of multihop underwater optical wireless sensor networks[C]//Proceedings of 2018 IEEE Wireless Communica-tions and Networking Conference, Barcelona, Spain, 2018: 1–6.

    [93] Xu J, Sun B, Lyu W C, et al. Underwater fiber–wireless commu-nication with a passive front end[J]. Optics Communications, 2017, 402: 260–264.

         Xu J, Sun B, Lyu W C, et al. Underwater fiber–wireless commu-nication with a passive front end[J]. Optics Communications, 2017, 402: 260–264.

    [94] Xu J, Sun B, Kong M W, et al. Underwater wireless optical communication using a blue-light leaky feeder[J]. Optics Com-munications, 2017, 397: 51–54.

         Xu J, Sun B, Kong M W, et al. Underwater wireless optical communication using a blue-light leaky feeder[J]. Optics Com-munications, 2017, 397: 51–54.

    Zhang Yufan, Li Xin, Lv Weichao, Chen Jiawang, Zheng Minhui, Xu Jing. Link structure of underwater wireless optical communication and progress on performance optimization[J]. Opto-Electronic Engineering, 2020, 47(9): 190734
    Download Citation