• Opto-Electronic Advances
  • Vol. 7, Issue 6, 230216 (2024)
Dohyun Kang1,†, Hyeonsu Heo1,†, Younghwan Yang1,†, Junhwa Seong1..., Hongyoon Kim1, Joohoon Kim1 and Junsuk Rho1,2,3,4,5,*|Show fewer author(s)
Author Affiliations
  • 1Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
  • 2Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
  • 3Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 36763, Republic of Korea
  • 4POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
  • 5National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
  • show less
    DOI: 10.29026/oea.2024.230216 Cite this Article
    Dohyun Kang, Hyeonsu Heo, Younghwan Yang, Junhwa Seong, Hongyoon Kim, Joohoon Kim, Junsuk Rho. Liquid crystal-integrated metasurfaces for an active photonic platform[J]. Opto-Electronic Advances, 2024, 7(6): 230216 Copy Citation Text show less
    References

    [1] S So, J Mun, J Park et al. Revisiting the design strategies for metasurfaces: fundamental physics, optimization, and beyond. Adv Mater, 35, 2206399(2023).

    [2] Y Yang, J Seong, M Choi et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light Sci Appl, 12, 152(2023).

    [3] Y Yang, H Kang, C Jung et al. Revisiting optical material platforms for efficient linear and nonlinear dielectric metasurfaces in the ultraviolet, visible, and infrared. ACS Photonics, 10, 307-321(2023).

    [4] GX Zheng, H Mühlenbernd, M Kenney et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol, 10, 308-312(2015).

    [5] WM Ye, F Zeuner, X Li et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun, 7, 11930(2016).

    [6] DD Wen, FY Yue, GX Li et al. Helicity multiplexed broadband metasurface holograms. Nat Commun, 6, 8241(2015).

    [7] LL Li, TJ Cui, W Ji et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun, 8, 197(2017).

    [8] T Naeem, J Kim, HS Khaliq et al. Dynamic chiral metasurfaces for broadband phase-gradient holographic displays. Adv Opt Mater, 11, 2370013(2023).

    [9] HS Khaliq, J Kim, T Naeem et al. Broadband chiro-optical effects for futuristic meta-holographic displays. Adv Opt Mater, 10, 2201175(2022).

    [10] J Kim, DK Oh, H Kim et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photonics Rev, 16, 2200098(2022).

    [11] B Ko, T Badloe, Y Yang et al. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat Commun, 13, 6256(2022).

    [12] ML Tseng, M Semmlinger, M Zhang et al. Vacuum ultraviolet nonlinear metalens. Sci Adv, 8, eabn5644(2022).

    [13] F Yang, HI Lin, MY Shalaginov et al. Reconfigurable parfocal zoom metalens. Adv Opt Mater, 10, 2200721(2022).

    [14] WB Feng, JC Zhang, QF Wu et al. RGB achromatic metalens doublet for digital imaging. Nano Lett, 22, 3969-3975(2022).

    [15] S Baek, J Kim, Y Kim et al. High numerical aperture RGB achromatic metalens in the visible. Photonics Res, 10, B30-B39(2022).

    [16] H Cho, H Jeong, Y Yang et al. Enhancement of luminous intensity emission from incoherent LED light sources within the detection angle of 10° using metalenses. Nanomaterials, 12, 153(2022).

    [17] HR Ren, J Jang, CH Li et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat Commun, 13, 4183(2022).

    [18] B Ko, J Kim, Y Yang et al. Humidity-responsive RGB-pixels via swelling of 3D nanoimprinted polyvinyl alcohol. Adv Sci, 10, 2204469(2023).

    [19] JT Gu, Y Liu, NN Meng et al. Structural colors based on diamond metasurface for information encryption. Adv Opt Mater, 11, 2202826(2023).

    [20] E Khaidarov, D Eschimese, KH Lai et al. Large-scale vivid metasurface color printing using advanced 12-in. immersion photolithography. Sci Rep, 12, 14044(2022).

    [21] J Kim, C Park, JW Hahn. Metal–semiconductor–metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range. Adv Opt Mater, 10, 2101930(2022).

    [22] JL Lu, B Sain, P Georgi et al. A versatile metasurface enabling superwettability for self-cleaning and dynamic color response. Adv Opt Mater, 10, 2101781(2022).

    [23] XL Zhuang, W Zhang, KM Wang et al. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light Sci Appl, 12, 14(2023).

    [24] SI Kim, J Park, BG Jeong et al. Two-dimensional beam steering with tunable metasurface in infrared regime. Nanophotonics, 11, 2719-2726(2022).

    [25] J Tao, Q You, ZL Li et al. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications. Adv Mater, 34, 2106080(2022).

    [26] SJ Wang, WT Qin, S Zhang et al. Nanoengineered spintronic-metasurface terahertz emitters enable beam steering and full polarization control. Nano Lett, 22, 10111-10119(2022).

    [27] NF Yu, F Capasso. Flat optics with designer metasurfaces. Nat Mater, 13, 139-150(2014).

    [28] X Xie, MB Pu, JJ Jin et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett, 126, 183902(2021).

    [29] Mueller JP Balthasar, NA Rubin, RC Devlin et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett, 118, 113901(2017).

    [30] T Badloe, I Kim, Y Kim et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv Sci, 8, 2102646(2021).

    [31] XM Liu, Q Zhao, CW Lan et al. Isotropic Mie resonance-based metamaterial perfect absorber. Appl Phys Lett, 103, 031910(2013).

    [32] K Bi, YS Guo, XM Liu et al. Magnetically tunable Mie resonance-based dielectric metamaterials. Sci Rep, 4, 7001(2014).

    [33] CX Liu, MV Rybin, P Mao et al. Disorder-immune photonics based on Mie-resonant dielectric metamaterials. Phys Rev Lett, 123, 163901(2019).

    [34] B Ratni, WA Merzouk, Lustrac A De et al. Design of phase-modulated metasurfaces for beam steering in Fabry–Perot cavity antennas. IEEE Antennas Wirel Propag Lett, 16, 1401-1404(2017).

    [35] L Zhang, X Wan, S Liu et al. Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface. IEEE Trans Antennas Propag, 65, 3374-3383(2017).

    [36] M Anzan-Uz-Zaman, K Song, DG Lee et al. A novel approach to Fabry–Pérot-resonance-based lens and demonstrating deep-subwavelength imaging. Sci Rep, 10, 10769(2020).

    [37] A Saba, MR Tavakol, P Karimi-Khoozani et al. Two-dimensional edge detection by guided mode resonant metasurface. IEEE Photonics Technol Lett, 30, 853-856(2018).

    [38] S Han, MV Rybin, P Pitchappa et al. Guided-mode resonances in all-dielectric terahertz metasurfaces. Adv Opt Mater, 8, 1900959(2020).

    [39] AS Kupriianov, Y Xu, A Sayanskiy et al. Metasurface engineering through bound states in the continuum. Phys Rev Appl, 12, 014024(2019).

    [40] K Koshelev, YT Tang, KF Li et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics, 6, 1639-1644(2019).

    [41] E Melik-Gaykazyan, K Koshelev, JH Choi et al. From Fano to Quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett, 21, 1765-1771(2021).

    [42] S Colburn, AL Zhan, A Majumdar. Metasurface optics for full-color computational imaging. Sci Adv, 4, eaar2114(2018).

    [43] C Lee, G Chang, J Kim et al. Concurrent optimization of diffraction fields from binary phase mask for three-dimensional nanopatterning. ACS Photonics, 10, 919-927(2023).

    [44] A Farmani. Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J Opt Soc Am B, 36, 401-407(2019).

    [45] TJ Smy, SA Stewart, JGN Rahmeier et al. FDTD simulation of dispersive metasurfaces with Lorentzian surface susceptibilities. IEEE Access, 8, 83027-83040(2020).

    [46] TI Jeong, DK Oh, S Kim et al. Deterministic nanoantenna array design for stable plasmon-enhanced harmonic generation. Nanophotonics, 12, 619-629(2023).

    [47] M Zhou, DJ Liu, SW Belling et al. Inverse design of metasurfaces based on coupled-mode theory and adjoint optimization. ACS Photonics, 8, 2265-2273(2021).

    [48] S So, Y Yang, S Son et al. Highly suppressed solar absorption in a daytime radiative cooler designed by genetic algorithm. Nanophotonics, 11, 2107-2115(2022).

    [49] T Lewi, HA Evans, NA Butakov et al. Ultrawide thermo-optic tuning of PbTe meta-atoms. Nano Lett, 17, 3940-3945(2017).

    [50] T Lewi, NA Butakov, JA Schuller. Thermal tuning capabilities of semiconductor metasurface resonators. Nanophotonics, 8, 331-338(2019).

    [51] SC Malek, AC Overvig, S Shrestha et al. Active nonlocal metasurfaces. Nanophotonics, 10, 655-665(2021).

    [52] XG Zhao, J Schalch, JD Zhang et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica, 5, 303-310(2018).

    [53] E Arbabi, A Arbabi, SM Kamali et al. MEMS-tunable dielectric metasurface lens. Nat Commun, 9, 812(2018).

    [54] ZY Han, S Colburn, A Majumdar et al. MEMS-actuated metasurface Alvarez lens. Microsyst Nanoeng, 6, 79(2020).

    [55] HS Ee, R Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett, 16, 2818-2823(2016).

    [56] P Gutruf, CJ Zou, W Withayachumnankul et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano, 10, 133-141(2016).

    [57] SC Malek, HS Ee, R Agarwal. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett, 17, 3641-3645(2017).

    [58] XJ Fu, L Shi, J Yang et al. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces. ACS Appl Mater Interfaces, 14, 22287-22294(2022).

    [59] J Zhang, XZ Wei, ID Rukhlenko et al. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photonics, 7, 265-271(2020).

    [60] J Zhang, ZF Li, LD Shao et al. Dynamical absorption manipulation in a graphene-based optically transparent and flexible metasurface. Carbon, 176, 374-382(2021).

    [61] Y Yao, R Shankar, MA Kats et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett, 14, 6526-6532(2014).

    [62] A Weiss, C Frydendahl, J Bar-David et al. Tunable metasurface using thin-film lithium niobate in the telecom regime. ACS Photonics, 9, 605-612(2022).

    [63] MR Shcherbakov, S Liu, VV Zubyuk et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun, 8, 17(2017).

    [64] G Isić, G Sinatkas, DC Zografopoulos et al. Electrically tunable metal–semiconductor–metal terahertz metasurface modulators. IEEE J Sel Top Quantum Electron, 25, 8500108(2019).

    [65] G Scalari, C Maissen, S Cibella et al. High quality factor, fully switchable terahertz superconducting metasurface. Appl Phys Lett, 105, 261104(2014).

    [66] AV Ustinov. Experiments with tunable superconducting metamaterials. IEEE Trans Terahertz Sci Technol, 5, 22-26(2015).

    [67] H Tao, AC Strikwerda, K Fan et al. Reconfigurable terahertz metamaterials. Phys Rev Lett, 103, 147401(2009).

    [68] WM Zhu, AQ Liu, XM Zhang et al. Switchable magnetic metamaterials using micromachining processes. Adv Mater, 23, 1792-1796(2011).

    [69] Gennes PG De, J Prost. The Physics of Liquid Crystals(1993).

    [70] A Basiri, MZE Rafique, J Bai et al. Ultrafast low-pump fluence all-optical modulation based on graphene-metal hybrid metasurfaces. Light Sci Appl, 11, 102(2022).

    [71] XQ Chen, JF Zhang, CC Wen et al. Optical nonlinearity and non-reciprocal transmission of graphene integrated metasurface. Carbon, 173, 126-134(2021).

    [72] Y Kim, PC Wu, R Sokhoyan et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett, 19, 3961-3968(2019).

    [73] YF Zhang, C Fowler, JH Liang et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat Nanotechnol, 16, 661-666(2021).

    [74] Y Hui, JS Gomez-Diaz, ZY Qian et al. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nat Commun, 7, 11249(2016).

    [75] T Cui, BF Bai, HB Sun. Tunable metasurfaces based on active materials. Adv Funct Mater, 29, 1806692(2019).

    [76] O Tsilipakos, AC Tasolamprou, A Pitilakis et al. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded network of controllers. Adv Opt Mater, 8, 2000783(2020).

    [77] T Badloe, J Lee, J Seong et al. Tunable metasurfaces: the path to fully active nanophotonics. Adv Photonics Res, 2, 2000205(2021).

    [78] OAM Abdelraouf, ZY Wang, HL Liu et al. Recent advances in tunable metasurfaces: materials, design, and applications. ACS Nano, 16, 13339-13369(2022).

    [79] N Jeon, J Noh, C Jung et al. Electrically tunable metasurfaces: from direct to indirect mechanisms. New J Phys, 24, 075001(2022).

    [80] B Ko, N Jeon, J Kim et al. Hydrogels for active photonics. Microsyst Nanoeng, 10, 1(2024).

    [81] JX Li, P Yu, S Zhang et al. Electrically-controlled digital metasurface device for light projection displays. Nat Commun, 11, 3574(2020).

    [82] CY Fan, TJ Chuang, KH Wu et al. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. Opt Express, 28, 10609-10617(2020).

    [83] PJ Collings, JS Patel. Handbook of Liquid Crystal Research(1997).

    [84] F Chu, LL Tian, R Li et al. Adaptive nematic liquid crystal lens array with resistive layer. Liq Cryst, 47, 563-571(2020).

    [85] JA Dolan, HG Cai, L Delalande et al. Broadband liquid crystal tunable metasurfaces in the visible: liquid crystal inhomogeneities across the metasurface parameter space. ACS Photonics, 8, 567-575(2021).

    [86] M Mitov. Cholesteric liquid crystals in living matter. Soft Matter, 13, 4176-4209(2017).

    [87] E Priestly. Introduction to Liquid Crystals(2012).

    [88] D Andrienko. Introduction to liquid crystals. J Mol Liq, 267, 520-541(2018).

    [89] Q Wu, HX Zhang, DG Jia et al. Recent development of tunable optical devices based on liquid. Molecules, 27, 8025(2022).

    [90] DW Berreman. Solid surface shape and the alignment of an adjacent nematic liquid crystal. Phys Rev Lett, 28, 1683-1686(1972).

    [91] JM Geary, JW Goodby, AR Kmetz et al. The mechanism of polymer alignment of liquid‐crystal materials. J Appl Phys, 62, 4100-4108(1987).

    [92] O Yaroshchuk, Y Reznikov. Photoalignment of liquid crystals: basics and current trends. J Mater Chem, 22, 286-300(2012).

    [93] P Hariharan. Optical Holography: Principles, Techniques and Applications(1996).

    [94] R Collier. Optical Holography(2013).

    [95] PA Blanche, A Bablumian, R Voorakaranam et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature, 468, 80-83(2010).

    [96] JW He, T Dong, BH Chi et al. Meta-hologram for three-dimensional display in terahertz waveband. Microelectron Eng, 220, 111151(2020).

    [97] P Genevet, F Capasso. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys, 78, 024401(2015).

    [98] H Gao, XH Fan, W Xiong et al. Recent advances in optical dynamic meta-holography. Opto-Electron Adv, 4, 210030-210030(2021).

    [99] G Yoon, T Tanaka, T Zentgraf et al. Recent progress on metasurfaces: applications and fabrication. J Phys D:Appl Phys, 54, 383002(2021).

    [100] SQ Zhu, ZT Xu, H Zhang et al. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption. Opt Express, 29, 9553-9564(2021).

    [101] CW Wan, Z Li, S Wan et al. Electric-driven meta-optic dynamics for simultaneous near-/far-field multiplexing display. Adv Funct Mater, 32, 2110592(2022).

    [102] DL Tang, ZL Shao, X Xie et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron Adv, 6, 220063(2023).

    [103] X Xie, WJ Du, ZL Shao et al. Multichannel binary-image and holographic display based on planar liquid crystal devices. Laser Photonics Rev, 17, 2300193(2023).

    [104] I Kim, MA Ansari, MQ Mehmood et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Adv Mater, 32, 2004664(2020).

    [105] D Psaltis, SR Quake, C Yang. Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442, 381-386(2006).

    [106] JG Cuennet, AE Vasdekis, Sio L De et al. Optofluidic modulator based on peristaltic nematogen microflows. Nat Photon, 5, 234-238(2011).

    [107] MA Naveed, J Kim, I Javed et al. Novel spin-decoupling strategy in liquid crystal-integrated metasurfaces for interactive metadisplays. Adv Opt Mater, 10, 2200196(2022).

    [108] I Kim, J Jang, G Kim et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat Commun, 12, 3614(2021).

    [109] Y Yang, H Kim, T Badloe et al. Gap-plasmon-driven spin angular momentum selection of chiral metasurfaces for intensity-tunable metaholography working at visible frequencies. Nanophotonics, 11, 4123-4133(2022).

    [110] A Asad, J Kim, HS Khaliq et al. Spin-isolated ultraviolet-visible dynamic meta-holographic displays with liquid crystal modulators. Nanoscale Horiz, 8, 759-766(2023).

    [111] GY Lee, JY Hong, S Hwang et al. Metasurface eyepiece for augmented reality. Nat Commun, 9, 4562(2018).

    [112] YY Shi, CW Wan, CJ Dai et al. Augmented reality enabled by on-chip meta-holography multiplexing. Laser Photonics Rev, 16, 2100638(2022).

    [113] Y Luo, CH Chu, S Vyas et al. Varifocal metalens for optical sectioning fluorescence microscopy. Nano Lett, 21, 5133-5142(2021).

    [114] YJ Wang, QM Chen, WH Yang et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun, 12, 5560(2021).

    [115] A Afridi, J Canet-Ferrer, L Philippet et al. Electrically driven varifocal silicon metalens. ACS Photonics, 5, 4497-4503(2018).

    [116] MY Shalaginov, SS An, YF Zhang et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun, 12, 1225(2021).

    [117] S Qin, N Xu, H Huang et al. Near-infrared thermally modulated varifocal metalens based on the phase change material Sb2S3. Opt Express, 29, 7925-7934(2021).

    [118] WT Chen, AY Zhu, V Sanjeev et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol, 13, 220-226(2018).

    [119] SM Wang, PC Wu, VC Su et al. A broadband achromatic metalens in the visible. Nat Nanotechnol, 13, 227-232(2018).

    [120] HP Zhou, L Chen, F Shen et al. Broadband achromatic metalens in the midinfrared range. Phys Rev Appl, 11, 024066(2019).

    [121] A Arbabi, E Arbabi, SM Kamali et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun, 7, 13682(2016).

    [122] B Groever, WT Chen, F Capasso. Meta-lens doublet in the visible region. Nano Lett, 17, 4902-4907(2017).

    [123] J Engelberg, C Zhou, N Mazurski et al. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics, 9, 361-370(2020).

    [124] MY Shalaginov, SS An, F Yang et al. Single-element diffraction-limited fisheye metalens. Nano Lett, 20, 7429-7437(2020).

    [125] YQ Hu, XN Ou, TB Zeng et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region. Nano Lett, 21, 4554-4562(2021).

    [126] L Jin, ZG Dong, ST Mei et al. Noninterleaved metasurface for (26-1) spin- and wavelength-encoded holograms. Nano Lett, 18, 8016-8024(2018).

    [127] M Bosch, MR Shcherbakov, K Won et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces. Nano Lett, 21, 3849-3856(2021).

    [128] T Badloe, Y Kim, J Kim et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens. ACS Nano, 17, 14678-14685(2023).

    [129] A Wehr, U Lohr. Airborne laser scanning—an introduction and overview. ISPRS J Photogramm Remote Sens, 54, 68-82(1999).

    [130] C Knoernschild, C Kim, FP Lu et al. Multiplexed broadband beam steering system utilizing high speed MEMS mirrors. Opt Express, 17, 7233-7244(2009).

    [131] DK Wang, C Watkins, HK Xie. MEMS mirrors for LiDAR: a review. Micromachines, 11, 456(2020).

    [132] ZQ He, FW Gou, R Chen et al. Liquid crystal beam steering devices: principles, recent advances, and future developments. Crystals, 9, 292(2019).

    [133] A Komar, R Paniagua-Domínguez, A Miroshnichenko et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics, 5, 1742-1748(2018).

    [134] SQ Li, XW Xu, RM Veetil et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [135] H Chung, OD Miller. Tunable metasurface inverse design for 80% switching efficiencies and 144° angular deflection. ACS Photonics, 7, 2236-2243(2020).

    [136] JB Wu, Z Shen, SJ Ge et al. Liquid crystal programmable metasurface for terahertz beam steering. Appl Phys Lett, 116, 131104(2020).

    [137] CX Liu, F Yang, XJ Fu et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Adv Opt Mater, 9, 2100932(2021).

    [138] F Neubrech, XY Duan, N Liu. Dynamic plasmonic color generation enabled by functional materials. Sci Adv, 6, eabc2709(2020).

    [139] WH Yang, SM Xiao, QH Song et al. All-dielectric metasurface for high-performance structural color. Nat Commun, 11, 1864(2020).

    [140] J Jang, T Badloe, Y Yang et al. Spectral modulation through the hybridization of Mie-Scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano, 14, 15317-15326(2020).

    [141] C Jung, SJ Kim, J Jang et al. Disordered-nanoparticle–based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci Adv, 8, eabm8598(2022).

    [142] S Sun, WH Yang, C Zhang et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces. ACS Nano, 12, 2151-2159(2018).

    [143] ZW Xie, JH Yang, V Vashistha et al. Liquid-crystal tunable color filters based on aluminum metasurfaces. Opt Express, 25, 30764-30770(2017).

    [144] Y Lee, MK Park, S Kim et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. ACS Photonics, 4, 1954-1966(2017).

    [145] L Driencourt, F Federspiel, D Kazazis et al. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals. ACS Photonics, 7, 444-453(2020).

    [146] D Franklin, R Frank, ST Wu et al. Actively addressed single pixel full-colour plasmonic display. Nat Commun, 8, 15209(2017).

    [147] T Badloe, J Kim, I Kim et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light Sci Appl, 11, 118(2022).

    [148] Y Yang, G Yoon, S Park et al. Revealing structural disorder in hydrogenated amorphous silicon for a low-loss photonic platform at visible frequencies. Adv Mater, 33, 2005893(2021).

    [149] CJ Zou, A Komar, S Fasold et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces. ACS Photonics, 6, 1533-1540(2019).

    [150] M Sharma, M Tal, C McDonnell et al. Electrically and all-optically switchable nonlocal nonlinear metasurfaces. Sci Adv, 9, eadh2353(2023).

    [151] YB Ni, C Chen, S Wen et al. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight, 2, 23(2022).

    [152] HJ Zhao, F Fan, TR Zhang et al. Dynamic terahertz anisotropy and chirality enhancement in liquid-crystal anisotropic dielectric metasurfaces. Photonics Res, 10, 1097-1106(2022).

    [153] ZX Shen, SH Zhou, SJ Ge et al. Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Appl Phys Lett, 114, 041106(2019).

    [154] JW Wang, K Li, HL He et al. Metasurface-enabled high-resolution liquid-crystal alignment for display and modulator applications. Laser Photonics Rev, 16, 2100396(2022).

    [155] YH Shih, XY Lin, HM Silalahi et al. Optically tunable terahertz metasurfaces using liquid crystal cells coated with photoalignment layers. Crystals, 11, 1100(2021).

    [156] T Badloe, J Mun, J Rho. Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors. J Nanomater, 2017, 2361042(2017).

    [157] R Alaee, M Albooyeh, C Rockstuhl. Theory of metasurface based perfect absorbers. J Phys D Appl Phys, 50, 503002(2017).

    [158] D Shrekenhamer, WC Chen, WJ Padilla. Liquid crystal tunable metamaterial absorber. Phys Rev Lett, 110, 177403(2013).

    [159] G Isić, B Vasić, DC Zografopoulos et al. Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals. Phys Rev Appl, 3, 064007(2015).

    [160] ST Yin, D Xiao, JX Liu et al. Reconfigurable chiral metasurface absorbers based on liquid crystals. IEEE Photonics J, 10, 4600909(2018).

    [161] ZP Yin, YJ Lu, TX Xia et al. Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal. RSC Adv, 8, 4197-4203(2018).

    [162] S Savo, D Shrekenhamer, WJ Padilla. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv Opt Mater, 2, 275-279(2014).

    [163] I Kim, WS Kim, K Kim et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci Adv, 7, eabe9943(2021).

    [164] K Li, JW Wang, WF Cai et al. Electrically switchable, polarization-sensitive encryption based on aluminum nanoaperture arrays integrated with polymer-dispersed liquid crystals. Nano Lett, 21, 7183-7190(2021).

    [165] J Tang, S Wan, YY Shi et al. Dynamic augmented reality display by layer-folded metasurface via electrical-driven liquid crystal. Adv Opt Mater, 10, 2200418(2022).

    [166] ZY Liu, C Zhang, WQ Zhu et al. Compact stereo waveguide display based on a unidirectional polarization-multiplexed metagrating in-coupler. ACS Photonics, 8, 1112-1119(2021).

    [167] S Mansha, P Moitra, XW Xu et al. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci Appl, 11, 141(2022).

    [168] ZX Zhu, YH Wen, JQ Li et al. Metasurface-enabled polarization-independent LCoS spatial light modulator for 4K resolution and beyond. Light Sci Appl, 12, 151(2023).

    [169] R Kowerdziej, J Wróbel, P Kula. Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal. Sci Rep, 9, 20367(2019).

    [170] M Sharma, L Michaeli, DB Haim et al. Liquid crystal switchable surface lattice resonances in plasmonic metasurfaces. ACS Photonics, 9, 2702-2712(2022).

    [171] D Xiao, YJ Liu, ST Yin et al. Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption. Opt Express, 26, 25305-25314(2018).

    [172] P Chen, LL Ma, W Hu et al. Chirality invertible superstructure mediated active planar optics. Nat Commun, 10, 2518(2019).

    [173] ZG Zheng, HL Hu, ZP Zhang et al. Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches. Nat Photonics, 16, 226-234(2022).

    [174] D Rocco, L Carletti, R Caputo et al. Switching the second harmonic generation by a dielectric metasurface via tunable liquid crystal. Opt Express, 28, 12037-12046(2020).

    [175] D Rocco, A Zilli, A Ferraro et al. Tunable second harmonic generation by an all-dielectric diffractive metasurface embedded in liquid crystals. New J Phys, 24, 045002(2022).

    [176] YD Liu, JL Song, WX Zhao et al. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics, 9, 855-863(2020).

    [177] ZC Zhang, Z You, DP Chu. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci Appl, 3, e213-e213(2014).

    [178] HMP Chen, JP Yang, HT Yen et al. Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices. Appl Sci, 8, 2323(2018).

    [179] Y Isomae, Y Shibata, T Ishinabe et al. Design of 1-μm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view. Opt Rev, 24, 165-176(2017).

    [180] MZ Jiao, ZB Ge, Q Song et al. Alignment layer effects on thin liquid crystal cells. Appl Phys Lett, 92, 061102(2008).

    [181] YV Izdebskaya, ZW Yang, MK Liu et al. Magnetic tuning of liquid crystal dielectric metasurfaces. Nanophotonics, 11, 3895-3900(2022).

    [182] RM Veetil, XW Xu, J Dontabhaktuni et al. Nanoantenna induced liquid crystal alignment for high performance tunable metasurface. Nanophotonics(2023).

    [183] GM Akselrod, Y Yang, P Bowen. Plasmonic surface-scattering elements and metasurfaces for optical beam steering. U. S. Patent(2019).

    [184] GM Akselrod, Y Yang, P Bowen. Tunable liquid crystal metasurfaces. U. S. Patent(2020).

    [185] S So, J Mun, J Rho. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles. ACS Appl Mater Interfaces, 11, 24264-24268(2019).

    [186] S So, T Badloe, J Noh et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9, 1041-1057(2020).

    [187] S So, J Kim, T Badloe et al. Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces. Adv Mater, 35, 2208520(2023).

    [188] C Lee, S Lee, J Seong et al. Inverse-designed metasurfaces for highly saturated transmissive colors. J Opt Soc Am B, 41, 151-158(2024).

    [189] YH Yao, H Liu, YF Wang et al. Nanoimprint lithography: an enabling technology for nanophotonics. Appl Phys A, 121, 327-333(2015).

    [190] DK Oh, T Lee, B Ko et al. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front Optoelectron, 14, 229-251(2021).

    [191] H Kang, D Lee, Y Yang et al. Emerging low-cost, large-scale photonic platforms with soft lithography and self-assembly. Photonics Insights, 2, R04(2023).

    [192] J Seong, Y Jeon, Y Yang et al. Cost-effective and environmentally friendly mass manufacturing of optical metasurfaces towards practical applications and commercialization.. Int J Precis Eng Manuf-Green Technol(2023).

    [193] J Kim, J Seong, W Kim et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat Mater, 22, 474-481(2023).

    [194] H Choi, J Kim, W Kim et al. Realization of high aspect ratio metalenses by facile nanoimprint lithography using water-soluble stamps. PhotoniX, 4, 18(2023).

    [195] SW Moon, J Kim, C Park et al. Wafer-scale manufacturing of near-infrared metalenses. Laser Photonics Rev, 2300929(2024).

    [196] D Oran, SG Rodriques, RX Gao et al. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science, 362, 1281-1285(2018).

    [197] W Jung, YH Jung, PV Pikhitsa et al. Three-dimensional nanoprinting via charged aerosol jets. Nature, 592, 54-59(2021).

    [198] XW Wen, BY Zhang, WP Wang et al. 3D-printed silica with nanoscale resolution. Nat Mater, 20, 1506-1511(2021).

    [199] WG Kim, H Kim, B Ko et al. Freestanding, freeform metamolecule fibers tailoring artificial optical magnetism. Small, 19, 2303749(2023).

    [200] WG Kim, SJ Kim, IH Lee et al. Nanofountain pen for writing hybrid plasmonic architectures. Small Struct, 5, 2300260(2024).

    Dohyun Kang, Hyeonsu Heo, Younghwan Yang, Junhwa Seong, Hongyoon Kim, Joohoon Kim, Junsuk Rho. Liquid crystal-integrated metasurfaces for an active photonic platform[J]. Opto-Electronic Advances, 2024, 7(6): 230216
    Download Citation