• Acta Optica Sinica
  • Vol. 37, Issue 1, 112004 (2017)
Wang Xingchang*, Li Shaokang, Li Gang, and Zhang Tiancai
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201737.0112004 Cite this Article Set citation alerts
    Wang Xingchang, Li Shaokang, Li Gang, Zhang Tiancai. Optical Fabry-Pérot Cavity System with High Thermal Stability and High Finesse[J]. Acta Optica Sinica, 2017, 37(1): 112004 Copy Citation Text show less
    References

    [1] Rafac R J, Young B C, Beall J A, et al. Sub-dekahertz ultraviolet spectroscopy of 199 Hg+[J]. Physical Review Letters, 2000, 85(12): 2462-2465.

    [2] Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10-16 level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161.

    [3] Saffman M, Walker T G, Mlmer K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313-2363.

    [4] Ludlow A D, Huang X, Notcutt M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1× 10-15[J]. Optics Letters, 2007, 32(6): 641-643.

    [5] Millo J, Magalhaes D V, Mandache C, et al. Ultrastable lasers based on vibration insensitive cavities[J]. Physical Review A, 2009, 79(5): 053829.

    [6] Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 2004, 93(25): 250602.

    [7] Kimble H J, Lev B L, Ye J. Optical interferometers with reduced sensitivity to thermal noise[J]. Physical Review Letters, 2008, 101(26): 260602.

    [8] Notcutt M, Ma L S, Ludlow A D, et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers[J]. Physical Review A, 2006, 73(3): 031804.

    [9] Webster S A, Oxborrow M, Pugla S, et al. Thermal-noise-limited optical cavity[J]. Physical Review A, 2008, 77(3): 033847.

    [10] Swallows M D, Martin M J, Bishof M, et al. Operating a 87 Sr optical lattice clock with high precision and at high density[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(3): 416-425.

    [11] Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-651.

    [12] Tian Xiao, Xu Qinfang, Yin Mojuan, et al. Experiment study on optical lattice clock of strontium at NTSC[J]. Acta Optica Sinica, 2015, 35(s1): s102001.

    [13] Cao Xuemin, Yang Xudong, Li Shujing, et al. A resonant frequency tunable and narrowband F-P interference filter controlled by the temperature[J]. Acta Sinica Quantum Optica, 2008, 14(1): 72-76.

    [14] Dai X, Jiang Y, Hang C, et al. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations[J]. Optics Express, 2015, 23(4): 5134-5146.

    [15] Chen Long, Zhang Linbo, Xu Guanjun, et al. Research on temperature control of optical cavity for laser frequency stabilization[J]. Journal of Time and Frequency, 2015, 38(3): 139-146.

    [16] Rempe G, Lalezari R, Thompson R J, et al. Measurement of ultralow losses in an optical interferometer[J]. Optics Letters, 1992, 17(5): 363-365.

    [17] Steck D A. Cesium D line data[J]. [2016-08-01]. http://steck.us/alkalidata/cesiumnumbers.1.6.pdf.

    [18] Legero T, Kessler T, Sterr U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors[J]. JOSA B, 2010, 27(5): 914-919.

    Wang Xingchang, Li Shaokang, Li Gang, Zhang Tiancai. Optical Fabry-Pérot Cavity System with High Thermal Stability and High Finesse[J]. Acta Optica Sinica, 2017, 37(1): 112004
    Download Citation