[1]
[2] J Leuthold, C Koos, W Freude. Nonlinear silicon photonics. Nat Photonics, 4, 535(2010).
[3] L Li, P G Patki, Y B Kwon et al. All-optical regenerator of multi-channel signals. Nat Commun, 8, 884(2017).
[4] F Li, T D Vo, C Husko et al. All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire. Opt Express, 19, 20364(2011).
[5] F Li, M Pelusi, B J Eggleton et al. Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire. Opt Express, 18, 3905(2010).
[6] H Ji, M Galili, H Hu et al. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photonics Technol Lett, 22, 1762(2010).
[7] C Monat, C Grillet, B Corcoran et al. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Opt Express, 18, 6831(2010).
[8] B Corcoran, C Monat, M Pelusi et al. Optical signal processing on a silicon chip at 640Gb/s using slow-light. Opt Express, 18, 7770(2010).
[9] V G Ta’eed, M Shokooh-Saremi, L B Fu et al. Integrated all-optical pulse regenerator in chalcogenide waveguides. Opt Lett, 30, 2900(2005).
[10] M Rochette, J N Kutz, J L Blows et al. Bit-error-ratio improvement with 2R optical regenerators. IEEE Photonics Technol Lett, 17, 908(2005).
[11] M Ferrera, C Reimer, A Pasquazi et al. CMOS compatible integrated all-optical radio frequency spectrum analyzer. Opt Express, 22, 21488(2014).
[12] C Monat, C Grillet, M Collins et al. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat Commun, 5, 3246(2014).
[13] F Li, M Pelusi, D X Xu et al. All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator. Opt Express, 19, 22410(2011).
[14] T D Vo, B Corcoran, J Schroder et al. Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals. J Lightwave Technol, 29, 1790(2011).
[15] M Ferrera, Y Park, L Razzari et al. All-optical 1st and 2nd order integration on a chip. Opt Express, 19, 23153(2011).
[16] B Corcoran, T D Vo, M D Pelusi et al. Silicon nanowire based radio-frequency spectrum analyzer. Opt Express, 18, 20190(2010).
[17] B Corcoran, C Monat, C Grillet et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photonics, 3, 206(2009).
[18] D J Moss, H M van Driel, J E Sipe. Dispersion in the anisotropy of optical third-harmonic generation in silicon. Opt Lett, 14, 57(1989).
[19] J Sipe, D Moss, H van Driel. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys Rev B, 35, 1129(1987).
[20] D J Moss, E Ghahramani, J E Sipe et al. Band-structure calculation of dispersion and anisotropy in χ→(3) for third-harmonic generation in Si, Ge, and GaAs. Phys Rev B, 41, 1542(1990).
[21] D J Moss, H M van Driel, J E Sipe. Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon. Appl Phys Lett, 48, 1150(1986).
[22] D J Moss, L Fu, I Littler et al. Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides. Electron Lett, 41, 320(2005).
[23] M R E Lamont, M Rochette, D J Moss et al. Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration. IEEE Photonics Technol Lett, 18, 1185(2006).
[24] A Tuniz, G Brawley, D J Moss et al. Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber. Opt Express, 16, 18524(2008).
[25] M D Pelusi, F Luan, E Magi et al. High bit rate all-optical signal processing in a fiber photonic wire. Opt Express, 16, 11506(2008).
[26] M W Lee, C Grillet, C L C Smith et al. Photosensitive post tuning of chalcogenide photonic crystal waveguides. Opt Express, 15, 1277(2007).
[27] S Tomljenovic-Hanic, M J Steel, C Martijn de Sterke et al. High-Q cavities in photosensitive photonic crystals. Opt Lett, 32, 542(2007).
[28] C Grillet, C Monat, C L Smith et al. Nanowire coupling to photonic crystal nanocavities for single photon sources. Opt Express, 15, 1267(2007).
[29] V Ta'Eed, N J Baker, L B Fu et al. Ultrafast all-optical chalcogenide glass photonic circuits. Opt Express, 15, 9205(2007).
[30] D Freeman, C Grillet, M W Lee et al. Chalcogenide glass photonic crystals. Photonics and Nanostructures-Fundamentals and Applications, 6, 3(2008).
[31] C Grillet, D Freeman, B Luther-Davies et al. Characterization and modeling of Fano resonances in chalcogenide glass photonic crystal membranes. 2006 Conf Lasers Electro-Opt 2006 Quantum Electron Laser Sci Conf, 1(2006).
[32] V G Ta'Eed, M Shokooh-Saremi, L Fu et al. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE J Sel Top Quantum Electron, 12, 360(2006).
[33] M Shokooh-Saremi, V G Ta'Eed, N J Baker et al. High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer. J Opt Soc Am B, 23, 1323(2006).
[34] M R E Lamont, V G Ta'Eed, M A F Roelens et al. Error-free wavelength conversion via cross-phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide. Electron Lett, 43, 945(2007).
[35] K Ikeda, R E Saperstein, N Alic et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express, 16, 12987(2008).
[36] J S Levy, A Gondarenko, M A Foster et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics, 4, 37(2010).
[37] L Razzari, D Duchesne, M Ferrera et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photonics, 4, 41(2010).
[38] D J Moss, R Morandotti, A L Gaeta et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics, 7, 597(2013).
[39] M Ferrera, L Razzari, D Duchesne et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics, 2, 737(2008).
[40] A Pasquazi, M Peccianti, Y Park et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nat Photonics, 5, 618(2011).
[41] D Duchesne, M Peccianti, M R E Lamont et al. Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt Express, 18, 923(2010).
[42] M Ferrera, Y Park, L Razzari et al. On-chip CMOS-compatible all-optical integrator. Nat Commun, 1, 29(2010).
[43] A Pasquazi, R Ahmad, M Rochette et al. All-optical wavelength conversion in an integrated ring resonator. Opt Express, 18, 3858(2010).
[44] A Pasquazi, Y Park, J Azaña et al. Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide. Opt Express, 18, 7634(2010).
[45] M Peccianti, M Ferrera, L Razzari et al. Subpicosecond optical pulse compression via an integrated nonlinear chirper. Opt Express, 18, 7625(2010).
[46] D Duchesne, M Ferrera, L Razzari et al. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt Express, 17, 1865(2009).
[47] A Pasquazi, M Peccianti, L Razzari et al. Micro-combs: A novel generation of optical sources. Phys Rep, 729, 1(2018).
[48] P Del’Haye, A Schliesser, O Arcizet et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214(2007).
[49] M Peccianti, A Pasquazi, Y Park et al. Demonstration of an ultrafast nonlinear microcavity modelocked laser. Nat Commun, 3, 765(2012).
[50] M Kues, C Reimer, B Wetzel et al. Passively mode-locked laser with an ultra-narrow spectral width. Nat Photonics, 11, 159(2017).
[51] A Pasquazi, L Caspani, M Peccianti et al. Self-locked optical parametric oscillation in a CMOS compatible microring resonator: A route to robust optical frequency comb generation on a chip. Opt Express, 21, 13333(2013).
[52] A Pasquazi, M Peccianti, B E Little et al. Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. Opt Express, 20, 27355(2012).
[53] C Reimer, L Caspani, M Clerici et al. Integrated frequency comb source of heralded single photons. Opt Express, 22, 6535(2014).
[54] C Reimer, M Kues, L Caspani et al. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nat Commun, 6, 8236(2015).
[55] L Caspani, C Reimer, M Kues et al. Multifrequency sources of quantum correlated photon pairs on-chip: A path toward integrated Quantum Frequency Combs. Nanophotonics, 5, 351(2016).
[56] C Reimer, M Kues, P Roztocki et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176(2016).
[57] M Kues, C Reimer, P Roztocki et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622(2017).
[58] P Roztocki, M Kues, C Reimer et al. Practical system for the generation of pulsed quantum frequency combs. Opt Express, 25, 18940(2017).
[59] Y B Zhang, M Kues, P Roztocki et al. Induced photon correlations through the overlap of two four-wave mixing processes in integrated cavities. Laser Photonics Rev, 14, 2000128(2020).
[60] M Kues, C Reimer, J M Lukens et al. Quantum optical microcombs. Nature Photon, 13, 170(2019).
[61] C Reimer, S Sciara, P Roztocki et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat Phys, 15, 148(2019).
[62] P Marin-Palomo, J N Kemal, M Karpov et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274(2017).
[63] J Pfeifle, V Brasch, M Lauermann et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat Photonics, 8, 375(2014).
[64] B Corcoran, M X Tan, X Y Xu et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun, 11, 1(2020).
[65] X Y Xu, M X Tan, B Corcoran et al. Photonic perceptron based on a kerr microcomb for high-speed, scalable, optical neural networks. Laser Photonics Rev, 14, 2000070(2020).
[66] X Y Xu, M X Tan, B Corcoran et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44(2021).
[67]
[68] D T Spencer, T Drake, T C Briles et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81(2018).
[69] T J Kippenberg, A L Gaeta, M Lipson et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).
[70] A L Gaeta, M Lipson, T J Kippenberg. Photonic-chip-based frequency combs. Nat Photonics, 13, 158(2019).
[71] P Del’Haye, T Herr, E Gavartin et al. Octave spanning tunable frequency comb from a microresonator. Phys Rev Lett, 107, 063901(2011).
[72] T J Kippenberg, R Holzwarth, S A Diddams. Microresonator-based optical frequency combs. Science, 332, 555(2011).
[73] T Herr, V Brasch, J D Jost et al. Temporal solitons in optical microresonators. Nat Photonics, 8, 145(2014).
[74] F Ferdous, H X Miao, D E Leaird et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat Photonics, 5, 770(2011).
[75] X X Xue, P H Wang, Y Xuan et al. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photonics Rev, 11, 1600276(2017).
[76] X X Xue, M H Qi, A M Weiner. Normal-dispersion microresonator Kerr frequency combs. Nanophotonics, 5, 244(2016).
[77] C Grillet, L Carletti, C Monat et al. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt Express, 20, 22609(2012).
[78] J W Choi, B U Sohn, G F R Chen et al. Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics, 4, 110804(2019).
[79] J Capmany, D Novak. Microwave photonics combines two worlds. Nat Photonics, 1, 319(2007).
[80] J P Yao. Microwave photonics. J Lightwave Technol, 27, 314(2009).
[81] D Marpaung, J P Yao, J Capmany. Integrated microwave photonics. Nat Photonics, 13, 80(2019).
[82] J Azaña. Ultrafast analog all-optical signal processors based on fiber-grating devices. IEEE Photonics J, 2, 359(2010).
[83] J Capmany, B Ortega, D Pastor. A tutorial on microwave photonic filters. J Lightwave Technol, 24, 201(2006).
[84] V R Supradeepa, C M Long, R Wu et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat Photonics, 6, 186(2012).
[85] J Y Wu, X Y Xu, T G Nguyen et al. RF photonics: An optical microcombs’ perspective. IEEE J Sel Top Quantum Electron, 24, 1(2018).
[86] V Torres-Company, A M Weiner. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev, 8, 368(2014).
[87] Z Jiang, C B Huang, D E Leaird et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics, 1, 463(2007).
[88] Y Liu, J Hotten, A Choudhary et al. All-optimized integrated RF photonic notch filter. Opt Lett, 42, 4631(2017).
[89] Y Liu, D Marpaung, A Choudhary et al. Link performance optimization of chip-based Si3N4 microwave photonic filters. J Lightwave Technol, 36, 4361(2018).
[90] Y Liu, Y Yu, S X Yuan et al. Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity. Opt Lett, 41, 5078(2016).
[91] D Marpaung, B Morrison, M Pagani et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica, 2, 76(2015).
[92] A Choudhary, B Morrison, I Aryanfar et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J Lightwave Technol, 35, 846(2017).
[93] D Marpaung, B Morrison, R Pant et al. Frequency agile microwave photonic notch filter with anomalously high stopband rejection. Opt Lett, 38, 4300(2013).
[94] X Q Zhu, F Y Chen, H F Peng et al. Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase. Opt Express, 25, 9232(2017).
[95] F Jiang, Y Yu, H T Tang et al. Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity. Opt Express, 24, 18655(2016).
[96] Z J Zhu, H Chi, T Jin et al. All-positive-coefficient microwave photonic filter with rectangular response. Opt Lett, 42, 3012(2017).
[97] G Yu, W Zhang, J A R Williams. High-performance microwave transversal filter using fiber Bragg grating arrays. IEEE Photonics Technol Lett, 12, 1183(2000).
[98] J S Leng, W Zhang, J A R Williams. Optimization of superstructured fiber Bragg gratings for microwave photonic filters response. IEEE Photonics Technol Lett, 16, 1736(2004).
[99] D B Hunter, R A Minasian, P A Krug. Tunable optical transversal filter based on chirped gratings. Electron Lett, 31, 2205(1995).
[100] E Hamidi, D E Leaird, A M Weiner. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans Microw Theory Tech, 58, 3269(2010).
[101] R Wu, V R Supradeepa, C M Long et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett, 35, 3234(2010).
[102] S Mansoori, A Mitchell. RF transversal filter using an AOTF. IEEE Photonics Technol Lett, 16, 879(2004).
[103] M Delgado-Pinar, J Mora, A Díez et al. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator. Opt Lett, 30, 8(2005).
[104] W Li, J Yao. Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer. Opt Express, 17, 23712(2009).
[105] C H Chen, C He, D Zhu et al. Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator. Opt Lett, 38, 3137(2013).
[106] T Saitoh, M Kourogi, M Ohtsu. An optical frequency synthesizer using a waveguide-type optical frequency comb generator at 1.5-
[107] T G Nguyen, M Shoeiby, S T Chu et al. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt Express, 23, 22087(2015).
[108] X X Xue, Y Xuan, H J Kim et al. Programmable single-bandpass photonic RF filter based on kerr comb from a microring. J Lightwave Technol, 32, 3557(2014).
[109] X Y Xu, J Y Wu, M Shoeiby et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics, 2, 096104(2017).
[110] X Y Xu, M X Tan, J Y Wu et al. Microcomb-based photonic RF signal processing. IEEE Photonics Technol Lett, 31, 1854(2019).
[111] X Y Xu, J Y Wu, T G Nguyen et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt Express, 26, 2569(2018).
[112] X X Xue, Y Xuan, C Y Bao et al. Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control. J Lightwave Technol, 36, 2312(2018).
[113] X Y Xu, J Y Wu, T G Nguyen et al. Broadband RF channelizer based on an integrated optical frequency kerr comb source. J Lightwave Technol, 36, 4519(2018).
[114] X Y Xu, J Y Wu, L N Jia et al. Continuously tunable orthogonally polarized RF optical single sideband generator based on micro-ring resonators. J Opt, 20, 115701(2018).
[115] X Y Xu, J Y Wu, M X Tan et al. Orthogonally polarized RF optical single sideband generation and dual-channel equalization based on an integrated microring resonator. J Lightwave Technol, 36, 4808(2018).
[116] X Y Xu, J Y Wu, T G Nguyen et al. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source. Photon Res, 6, B30(2018).
[117] X Y Xu, M X Tan, J Y Wu et al. Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source. J Lightwave Technol, 37, 1288(2019).
[118] W Liang, D Eliyahu, V S Ilchenko et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat Commun, 6, 7957(2015).
[119] J Q Liu, E Lucas, A S Raja et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat Photonics, 14, 486(2020).
[120] X Y Xu, J Y Wu, M X Tan et al. Broadband microwave frequency conversion based on an integrated optical micro-comb source. J Lightwave Technol, 38, 332(2020).
[121] M X Tan, X Y Xu, J Y Wu et al. Photonic RF and microwave filters based on 49 GHz and 200 GHz Kerr microcombs. Opt Commun, 465, 125563(2020).
[122] X Y Xu, M X Tan, J Y Wu et al. Broadband photonic RF channelizer with 92 channels based on a soliton crystal microcomb. J Lightwave Technol, 38, 5116(2020).
[123] X Xu, M Tan, J Wu et al. Photonic RF and microwave integrator based on a transversal filter with soliton crystal microcombs. IEEE Trans Circuits ad Syst II, 67, 3582(2020).
[124] X Y Xu, M X Tan, J Wu et al. Photonic RF phase-encoded signal generation with a microcomb source. J Lightwave Technol, 38, 1722(2020).
[125] X Y Xu, M X Tan, J Y Wu et al. High performance RF filters via bandwidth scaling with Kerr micro-combs. APL Photonics, 4, 026102(2019).
[126] M X Tan, X Y Xu, B Corcoran et al. Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr micro-comb. J Lightwave Technol, 37, 6097(2019).
[127] M X Tan, X Y Xu, B Corcoran et al. RF and microwave fractional differentiator based on photonics. IEEE Trans Circuits Syst II, 67, 2767(2020).
[128] M X Tan, X Y Xu, A Boes et al. Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source. J Lightwave Technol, 38, 6221(2020).
[129] M X Tan, X Y Xu, J Y Wu et al. RF and microwave photonic temporal signal processing with Kerr micro-combs. Adv Phys X, 6, 1838946(2021).
[130] D C Cole, E S Lamb, P Del’Haye et al. Soliton crystals in Kerr resonators. Nat Photonics, 11, 671(2017).
[131] W Q Wang, Z Z Lu, W F Zhang et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett, 43, 2002(2018).
[132] B Stern, X Ji, Y Okawachi et al. Battery-operated integrated frequency comb generator. Nature, 562, 401(2018).
[133] X X Xue, Y Xuan, Y Liu et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat Photonics, 9, 594(2015).
[134] H L Bao, A Cooper, M Rowley et al. Laser cavity-soliton microcombs. Nat Photonics, 13, 384(2019).
[135] X X Xue, X P Zheng, B K Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nat Photonics, 13, 616(2019).
[136] H Zhou, Y Geng, W W Cui et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Sci Appl, 8, 1(2019).
[137] H L Bao, L Olivieri, M Rowley et al. Turing patterns in a fiber laser with a nested microresonator: Robust and controllable microcomb generation. Phys Rev Res, 2, 023395(2020).
[138] L di Lauro, J Li, D J Moss et al. Parametric control of thermal self-pulsation in micro-cavities. Opt Lett, 42, 3407(2017).
[139] H L Bao, A Cooper, S T Chu et al. Type-II micro-comb generation in a filter-driven four wave mixing laser. Photon Res, 6, B67(2018).
[140] B Q Shen, L Chang, J Q Liu et al. Integrated turnkey soliton microcombs. Nature, 582, 365(2020).
[141] S L Pan, J P Yao. Photonics-based broadband microwave measurement. J Lightwave Technol, 35, 3498(2017).
[142] J Azana, C Madsen, K Takiguchi et al. Guest editorial optical signal processing. J Lightwave Technol, 24, 2484(2006).
[143] D Marpaung, M Pagani, B Morrison et al. Nonlinear integrated microwave photonics. J Lightwave Technol, 32, 3421(2014).
[144] R A Minasian. Ultra-wideband and adaptive photonic signal processing of microwave signals. IEEE J Quantum Electron, 52, 1(2016).
[145] X H Zou, B Lu, W Pan et al. Photonics for microwave measurements. Laser Photonics Rev, 10, 711(2016).
[146] K Xu, R X Wang, Y T Dai et al. Microwave photonics: Radio-over-fiber links, systems, and applications. Photon Res, 2, B54(2014).
[147] S L Pan, D Zhu, S F Liu et al. Satellite payloads pay off. IEEE Microwave, 16, 61(2015).
[148] H W Chen, R Y Li, C Lei et al. Photonics-assisted serial channelized radio-frequency measurement system with nyquist-bandwidth detection. IEEE Photonics J, 6, 1(2014).
[149] X J Xie, Y T Dai, Y Ji et al. Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb. IEEE Photonics Technol Lett, 24, 661(2012).
[150] W S Wang, R L Davis, T J Jung et al. Characterization of a coherent optical RF channelizer based on a diffraction grating. IEEE Trans Microw Theory Tech, 49, 1996(2001).
[151] W T Rhodes. Acousto-optic signal processing: Convolution and correlation. Proc IEEE, 69, 65(1981).
[152] D B Hunter, L G Edvell, M A Englund. Wideband microwave photonic channelised receiver. 2005 International Topical Meeting on Microwave Photonics, 249(2005).
[153] S T Winnall, A C Lindsay, M W Austin et al. A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system. IEEE Trans Microw Theory Tech, 54, 868(2006).
[154] W Y Xu, D Zhu, S L Pan. Coherent photonic radio frequency channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering. Opt Eng, 55, 046106(2016).
[155] X H Zou, W Z Li, W Pan et al. Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering. IEEE Trans Microw Theory Tech, 61, 3470(2013).
[156] C S Bres, S Zlatanovic, A O J Wiberg et al. Parametric photonic channelized RF receiver. IEEE Photon Technol Lett, 23, 344(2011).
[157] A O J Wiberg, D J Esman, L Liu et al. Coherent filterless wideband microwave/millimeter-wave channelizer based on broadband parametric mixers. J Lightwave Technol, 32, 3609(2014).
[158] X H Zou, W Pan, B Luo et al. Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source. Opt Lett, 35, 438(2010).
[159]
[160] X J Xie, Y T Dai, K Xu et al. Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators. IEEE Photonics J, 4, 1196(2012).
[161] Z Li, X M Zhang, H Chi et al. A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb. Opt Commun, 285, 2311(2012).
[162] R Y Li, H W Chen, Y Yu et al. Multiple-frequency measurement based on serial photonic channelization using optical wavelength scanning. Opt Lett, 38, 4781(2013).
[163] W H Hao, Y T Dai, F F Yin et al. Chirped-pulse-based broadband RF channelization implemented by a mode-locked laser and dispersion. Opt Lett, 42, 5234(2017).
[164] T Herr, K Hartinger, J Riemensberger et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat Photonics, 6, 480(2012).
[165] L Caspani, C Xiong, B Eggleton et al. On-chip sources of quantum correlated and entangled photons. Light Sci Appl, 6, e17100(2017).
[166] F da Ros, E Porto da Silva, D Zibar et al. Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide. APL Photonics, 2, 046105(2017).
[167] X X Xue, A M Weiner. Microwave photonics connected with microresonator frequency combs. Front Optoelectron, 9, 238(2016).
[168] S Coen, H G Randle, T Sylvestre et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt Lett, 38, 37(2012).
[169] Y K Chembo, C R Menyuk. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys Rev A, 87, 053852(2013).
[170] H Guo, M Karpov, E Lucas et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat Phys, 13, 94(2017).
[171] X X Xue, Y Xuan, C Wang et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt Express, 24, 687(2016).
[172] B Bernhardt, A Ozawa, P Jacquet et al. Cavity-enhanced dual-comb spectroscopy. Nat Photonics, 4, 55(2010).
[173] T Ideguchi, A Poisson, G Guelachvili et al. Adaptive real-time dual-comb spectroscopy. Nat Commun, 5, 3375(2014).
[174] G Millot, S Pitois, M Yan et al. Frequency-agile dual-comb spectroscopy. Nat Photonics, 10, 27(2016).
[175] M G Suh, Q F Yang, K Y Yang et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600(2016).
[176] N G Pavlov, G Lihachev, S Koptyaev et al. Soliton dual frequency combs in crystalline microresonators. Opt Lett, 42, 514(2017).
[177] T C Briles, T E Drake, D T Spencer et al. Optical frequency synthesis using a dual-Kerr-microresonator frequency comb. Conference on Lasers and Electro-Optics, SW4N. 3(2017).
[178] B E Little, S T Chu, P P Absil et al. Very high-order microring resonator filters for WDM applications. IEEE Photon Technol Lett, 16, 2263(2004).