• Journal of Advanced Dielectrics
  • Vol. 12, Issue 5, 2250014 (2022)
Xinran Wang*, Huanghui Nie*, Yan Yan*, and Gang Liu*
Author Affiliations
  • Faculty of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
  • show less
    DOI: 10.1142/S2010135X2250014X Cite this Article
    Xinran Wang, Huanghui Nie, Yan Yan, Gang Liu. Enhancement of electro-strain performance of KTaO3 modified 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics[J]. Journal of Advanced Dielectrics, 2022, 12(5): 2250014 Copy Citation Text show less
    References

    [1] J. Koruza, A. J. Bell, T. Fromling, K. G. Webber, K. Wang, J. Rodel. Requirements for the transfer of lead-free piezoceramics into application. J. Materiomics, 4, 13(2018).

    [2] L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 102, 72(2019).

    [3] T. Zheng, J. G. Wu, D. Q. Xiao, J. G. Zhu. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci., 98, 552(2018).

    [4] J. G. Hao, W. Li, J. W. Zhai, H. Chen. Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R-Rep., 135, 1(2019).

    [5] G. Liu, M. Y. Tang, X. Hou, B. A. Guo, J. W. Lv, J. Dong, Y. Wang, Q. Li, K. Yu, Y. Yan, L. Jin. Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process. Chem. Eng. J., 412, 12(2021).

    [6] K. Nakamura. Ultrasonic Transducers, 70(2012).

    [7] B. Jaffe, W. R. Cook, H. Jaffe. Piezoelectric Ceramics(1971).

    [8] S. J. Zhang, J. Luo, D. W. Snyder, T. R. Shrout. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, 130(2008).

    [9] G. Liu, Y. Li, M. Q. Shi, L. J. Yu, P. Chen, K. Yu, Y. Yan, L. Jin, D. W. Wang, J. H. Gao. An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability. Ceram. Int., 45, 19189(2019).

    [10] G. Liu, Y. Li, B. Guo, M. Y. Tang, Q. Li, J. Dong, L. J. Yu, K. Yu, Y. Yan, D. W. Wang, L. Y. Zhang, H. B. Zhang, Z. B. He, L. Jin. Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem. Eng. J., 398, 10(2020).

    [11] G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, N. N. Krainik. New ferroelectrics of complex composition 4. Soviet Phys.-Solid State, 2, 2651(1961).

    [12] X. Xia, X. A. Jiang, J. T. Zeng, L. Y. Zheng, Z. Y. Man, H. R. Zeng, G. R. Li. Critical state to achieve a giant electric field-induced strain with a low hysteresis in relaxor piezoelectric ceramics. J. Materiomics, 7, 1143(2021).

    [13] Z. M. Tian, Y. S. Zhang, S. L. Yuan, M. S. Wu, C. H. Wang, Z. Z. Ma, S. X. Huo, H. N. Duan. Enhanced multiferroic properties and tunable magnetic behavior in multiferroic BiFeO3 -Bi0.5- Na0.5TiO3 solid solutions. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 177, 74(2012).

    [14] K. Sakata, Y. Masuda. Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 solid-solution ceramics. Ferroelectrics, 7, 347(1974).

    [15] G. Liu, J. Dong, L. Zhang, Y. Yan, R. Jing, L. Jin. Phase evolution in (1−x)(Na0.5 Bi0.5)TiO3-xSrTiO3 solid solutions: A study focusing on dielectric and ferroelectric characteristics. J. Materiomics, 6, 677(2020).

    [16] F. Z. Zeng, M. H. Cao, L. Zhang, M. Liu, H. Hao, Z. H. Yao, H. X. Liu. Microstructure and dielectric properties of SrTiO3 ceramics by controlled growth of silica shells on SrTiO3 nanoparticles. Ceram. Int., 43, 7710(2017).

    [18] T. Takenaka, T. Okuda, K. Takegahara. Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3. Ferroelectrics, 196, 495(1997).

    [19] Z. Yang, B. Liu, L. Wei, Y. Hou. Structure and electrical properties of (1−x)Bi0.5 Na0.5TiO3–xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary. Mater. Res. Bull., 43, 81(2008).

    [20] L. Gao, W. C. Zhou, F. Luo, D. M. Zhu, J. Wang. Dielectric and microwave absorption properties of KNN/Al 2O3 composite ceramics. Ceram. Int., 43, 12731(2017).

    [21] W. J. Merz. The electric and optical behavior of batio3 single-domain crystals. Phys. Rev., 76, 1221(1949).

    [22] A. K. Yadav, H. Q. Fan, B. B. Yan, C. Wang, J. W. Ma, M. C. Zhang, Z. N. Du, W. J. Wang, W. Q. Dong, S. R. Wang. High strain and high energy density of lead-free (Bi0.50Na0.40K0.10)0.94Ba0.06Ti(1−x) (Al0.50Ta0.50)xO3 perovskite ceramics. J. Mater. Sci., 55, 11137(2020).

    [23] T. Takenaka, K. Sakata, K. Toda. Piezoelectric properties of (Bi1/2Na1/2)TiO3-based ceramics. Ferroelectrics, 106, 375(1990).

    [24] C. Ma, H. Z. Guo, S. P. Beckman, X. L. Tan. Creation and destruction of morphotropic phase boundaries through electrical poling: A case study of lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoelectrics. Phys. Rev. Lett., 109, 5(2012).

    [26] S. T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H. J. Kleebe, J. Rodel. Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO 3-BaTiO3-K0.5 Na0.5NbO3. I. Structure and room temperature properties. J. Appl. Phys., 103, 8(2008).

    [27] Q. Li, S. Gao, L. Ning, H. Q. Fan, Z. Y. Liu, Z. Li. Giant field-induced strain in Nb2O 5-modified (Bi0.5Na0.5)(0.94)Ba0.06TiO3 lead-free ceramics. Ceram. Int., 43, 5367(2017).

    [28] H. Wang, Q. Li, A. K. Yadav, Y. X. Jia, B. B. Yan, Q. F. Quan, Q. Shen, L. Lei, W. J. Wang, H. Q. Fan. Large field-induced strain with enhanced temperature-stable dielectric properties of AgNbO3-modified (Bi0.5Na0.5)(0.94)Ba0.06TiO3 lead-free ceramics. Ceram. Int., 47, 20900(2021).

    [29] Y. L. Huang, C. L. Zhao, B. Wu, J. G. Wux. Multifunctional BaTiO3-based relaxor ferroelectrics toward excellent energy storage performance and electrostrictive strain benefiting from crossover region. ACS Appl. Mater. Interfaces, 12, 23885(2020).

    [30] F. Li, S. J. Zhang, D. Damjanovic, L. Q. Chen, T. R. Shrout. Local structural heterogeneity and electromechanical responses of ferroelectrics: Learning from relaxor ferroelectrics. Adv. Funct. Mater., 28, 21(2018).

    [31] V. V. Shvartsman, D. C. Lupascu. Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc., 95, 1(2012).

    [32] C. L. Zhao, B. Wu, K. Wang, J. F. Li, D. Q. Xiao, J. G. Zhu, J. G. Wu. Practical high strain with superior temperature stability in lead-free piezoceramics through domain engineering. J. Mater. Chem. A, 6, 23736(2018).

    [33] H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rodel, M. Hoffman. Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3-6%BaTiO3. Appl. Phys. Lett., 98, 3(2011).

    [34] J. E. Daniels, W. Jo, J. Rodel, J. L. Jones. Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3-7% BaTiO3 piezoelectric ceramic. Appl. Phys. Lett., 95, 3(2009).

    [35] W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H. J. Kleebe, A. J. Bell, J. Rodel. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. J. Appl. Phys., 110, 9(2011).

    [36] R. D. Shannon. revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 32, 751(1976).

    [37] J. G. Hao, Z. J. Xu, R. Q. Chu, W. Li, P. Fu, J. Du, G. R. Li. Structure evolution and electrostrictive properties in (Bi0.5Na0.5)(0.94)Ba0.06TiO3-M2 O5(M = Nb, Ta, Sb) lead-free piezoceramics. J. Eur. Ceram. Soc., 36, 4003(2016).

    [38] Y. Hiruma, K. Yoshii, H. Nagata, T. Takenaka. Phase transition temperature and electrical properties of (Bi(1/2)Na(1/2))TiO(3) -(Bi(1/2)A(1/2))TiO(3)(A=Li and K) lead-free ferroelectric ceramics. J. Appl. Phys., 103, 7(2008).

    [39] S. Prasertpalichat, S. Khengkhatkan, T. Siritanon, J. Jutimoosik, P. Kidkhunthod, T. Bongkarn, E. A. Patterson. Comparison of structural, ferroelectric, and piezoelectric properties between A-site and B-site acceptor doped 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 lead-free piezoceramics. J. Eur. Ceram. Soc., 41, 4116(2021).

    [40] Q. Li, C. Wang, W. M. Zhang, H. Q. Fan. Influence of compositional ratio K/Na on structure and piezoelectric properties in (Na1−xKx)(0.5)Bi0.5Ti0.985 Ta0.015O3 ceramics. J. Mater. Sci., 54, 4523(2019).

    [41] J. N. Sui, H. Q. Fan, H. J. Peng, J. W. Ma, A. K. Yadav, W. Chao, M. C. Zhang, G. Z. Dong. Enhanced energy-storage performance and temperature-stable dielectric properties of (1-x) (Na0.5Bi0.5)(0.95)Ba0.05(0.98)La0.02TiO3 -xK(0.5)Na(0.5)NbO(3) lead-free ceramics. Ceram. Int., 45, 20427(2019).

    [42] S. Manotham, P. Butnoi, P. Jaita, N. Kumar, K. Chokethawai, G. Rujijanagul, D. P. Cann. Large electric field-induced strain and large improvement in energy density of bismuth sodium potassium titanate-based piezoelectric ceramics. J. Alloy. Compd., 739, 457(2018).

    [43] E. Aksel, J. S. Forrester, B. Kowalski, M. Deluca, D. Damjanovic, J. L. Jones. Structure and properties of Fe-modified Na0.5Bi0.5TiO3 at ambient and elevated temperature. Phys. Rev. B, 85, 11(2012).

    [44] S. Praharaj, D. Rout. Estimation of relaxor behavior in Sr2+ doped Na0.5Bi0.5 TiO3ceramics. J. Mater. Sci.-Mater. Electron., 31, 5554(2020).

    [45] E. Taghaddos, M. Hejazi, A. Safari. Electromechanical Properties of Acceptor-Doped Lead-Free Piezoelectric Ceramics. J. Am. Ceram. Soc., 97, 1756(2014).

    [46] A. Singh, R. Chatterjee. 0.40% Bipolar Strain in Lead Free BNT-KNN System Modified with Li, Ta and Sb. J. Am. Ceram. Soc., 96, 509(2013).

    [47] P. Yadav, S. Sharma, N. P. Lalla. Coexistence of domain relaxation with ferroelectric phase transitions in BaTiO3. J. Appl. Phys., 121, 9(2017).

    [48] C. R. Zhou, X. Y. Liu. Dielectric and piezoelectric properties of Bi0.5Na0.5TiO3-BaNb2 O6 lead-free piezoelectric ceramics. J. Mater. Sci.-Mater. Electron., 19, 29(2008).

    [49] A. Ullah, C. W. Ahn, A. Hussain, I. W. Kim. The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)(0.5)TiO3 piezoelectric ceramics synthesized by the sol-gel technique. Curr. Appl. Phys., 10, 1367(2010).

    [50] C. Xu, D. Lin, K. W. Kwok. Structure, electrical properties and depolarization temperature of (Bi0.5 Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sciences, 10, 934(2008).

    [51] W. Jo, R. Dittmer, M. Acosta, J. D. Zang, C. Groh, E. Sapper, K. Wang, J. Rodel. Giant electric-field-induced strains in lead-free ceramics for actuator applications - status and perspective. J. Electroceram., 29, 71(2012).

    [52] C. H. Lee, H. S. Han, T. A. Duong, T. H. Dinh, C. W. Ahn, J. S. Lee. Stabilization of the relaxor phase by adding CuO in lead-free (Bi1/2Na1/2) TiO3-SrTiO3-BiFeO3 ceramics. Ceram. Int., 43, 11071(2017).

    [53] A. Hussain, J. U. Rahman, A. Zaman, R. A. Malik, J. S. Kim, T. K. Song, W. J. Kim, M. H. Kim. Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)(1/2)TiO3 -SrZrO3 ceramics. Mater. Chem. Phys., 143, 1282(2014).

    [54] K. S. Rao, D. M. Prasad, P. M. Krishna, T. S. Latha, J. H. Lee. Electrical and electromechanical studies on tungsten-bronze electroceramic: Lead potassium dysprosium niobate. Optoelectron. Adv. Mater.-Rapid Commun., 1, 510(2007).

    [55] S. Anem, K. S. Rao, K. H. Rao. Investigation of lanthanum substitution in lead-free BNBT ceramics for transducer applications. Ceram. Int., 42, 15319(2016).

    [56] Y. C. Wu, G. S. Wang, Z. Jiao, X. L. Dong. Excellent temperature stability with giant electrostrain in Bi0.5Na0.5TiO3-based ceramics. Scr. Mater., 179, 70(2020).

    [57] G. Z. Dong, H. Q. Fan, Y. X. Jia, H. Liu, W. J. Wang, Q. Li. Strain properties of (1-x)Bi0.5Na0.4K0.1TiO3 -xBi(Mg2/3Ta1/3)O3 electroceramics. Ceram. Int., 46, 21211(2020).

    [58] Q. Li, L. Ning, B. Hu, H. J. Peng, N. S. Zhao, H. Q. Fan. Large strain response in (1-x)(0.94Bi(0.5) Na(0.5)TiO(3)-0.06BaTiO(3))xSr(0.8)Bi(0.1) square 0.1Ti0.8Zr0.2O2.95 lead-free piezoelectric ceramics. Ceram. Int., 45, 1676(2019).

    [59] J. H. Han, J. Yin, J. G. Wu. BNT-based ferroelectric ceramics: Electrical properties modification by Ta2O5 oxide addition. J. Am. Ceram. Soc., 103, 412(2020).

    [60] H. Y. He, W. H. Lu, J. A. S. Oh, Z. R. Li, X. Lu, K. Y. Zeng, L. Lu. Probing the coexistence of ferroelectric and relaxor states in Bi0.5Na0.5TiO3-based ceramics for enhanced piezoelectric performance. ACS Appl. Mater. Interfaces, 12, 30548(2020).

    [61] T. Li, X. J. Lou, X. Q. Ke, S. D. Cheng, S. B. Mi, X. J. Wang, J. Shi, X. Liu, G. Z. Dong, H. Q. Fan, Y. Z. Wang, X. L. Tan. Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5) TiO3 -based lead-free piezoceramics. Acta Mater., 128, 337(2017).

    [62] J. G. Hao, B. Shen, J. W. Zhai, C. Z. Liu, X. L. Li, X. Y. Gao. Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3-(K0.5 Bi0.5)TiO3-(K0.5Na0.5)NbO3 system. J. Appl. Phys., 113, 13(2013).

    [63] H. Wang, Q. Li, Y. X. Jia, A. K. Yadav, B. B. Yan, M. Y. Li, Q. F. Quan, W. J. Wang, H. Q. Fan. Large electro-strain with excellent fatigue resistance of lead-free (Bi0.5 Na0.5)(0.94)Ba0.06Ti1−x(Y0.5Nb0.5)(x)O3 perovskite ceramics. Ceram. Int., 47, 17092(2021).

    [64] Y. M. Li, W. Chen, Q. Xu, J. Zhou, X. Y. Gu. Piezoelectric and ferroelectric properties of Na0.5 Bi0.5TiO3-K0.5Bi0.5TiO3 -BaTiO3 piezoelectric ceramics. Mater. Lett., 59, 1361(2005).

    [65] E. Sapper, N. Novak, W. Jo, T. Granzow, J. Rodel. Electric-field-temperature phase diagram of the ferroelectric relaxor system (1-x)Bi1/2Na1/2TiO3-xBaTiO(3)doped with manganese. J. Appl. Phys., 115, 7(2014).

    [66] W. F. Bai, D. Q. Chen, Y. W. Huang, B. Shen, J. W. Zhai, Z. G. Ji. Electromechanical properties and structure evolution in BiAlO3-modified Bi0.5Na0.5TiO3-BaTiO3 lead-free piezoceramics. J. Alloy. Compd., 667, 6(2016).

    [67] W. Jo, T. Granzow, E. Aulbach, J. Rodel, D. Damjanovic. Origin of the large strain response in (K0.5Na0.5)NbO3 -modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics. J. Appl. Phys., 105, 5(2009).

    [68] W. F. Bai, D. Q. Chen, Y. W. Huang, P. Zheng, J. S. Zhong, M. Y. Ding, Y. J. Yuan, B. Shen, J. W. Zhai, Z. G. Ji. Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics. Ceram. Int., 42, 7669(2016).

    [69] J. Shi, X. Liu, W. C. Tian. High energy-storage properties of Bi0.5Na0.5 TiO3-BaTiO3-SrTi0.875Nb0.1O3 lead-free relaxor ferroelectrics. J. Mater. Sci. Technol., 34, 2371(2018).

    [70] W. Jo, J. Rodel. Electric-field-induced volume change and room temperature phase stability of (Bi1/2 Na1/2)TiO3-x mol. % BaTiO3 piezoceramics. Appl. Phys. Lett., 99, 3(2011).

    [71] J. G. Hao, B. Shen, J. W. Zhai, H. Chen. Phase transitional behavior and electric field-induced large strain in alkali niobate-modified Bi0.5(Na0.80 K0.20)(0.5)TiO3 lead-free piezoceramics. J. Appl. Phys., 115, 8(2014).

    [72] W. F. Bai, L. Y. Li, W. Li, B. Shen, J. W. Zhai, H. Chen. Phase Diagrams and Electromechanical Strains in Lead-Free BNT-Based Ternary Perovskite Compounds. J. Am. Ceram. Soc., 97, 3510(2014).

    [73] Q. R. Yao, F. F. Wang, F. Xu, C. M. Leung, T. Wang, Y. X. Tang, X. Ye, Y. Q. Xie, D. Sun, W. Z. Shi. Electric Field-Induced Giant Strain and Photoluminescence-Enhancement Effect in Rare-Earth Modified Lead-Free Piezoelectric Ceramics. ACS Appl. Mater. Interfaces, 7, 5066(2015).

    [74] D. Liu, C. Y. Tian, C. G. Ma, L. H. Luo, Y. X. Tang, T. Wang, W. Z. Shi, D. Z. Sun, F. F. Wang. Composition, electric-field and temperature induced domain evolution in lead-free Si0.5Na0.5TiO3-BaTiO3 -SrTiO3 solid solutions by piezoresponse force microscopy. Scr. Mater., 123, 64(2016).

    [75] R. Dittmer, W. Jo, J. Rodel, S. Kalinin, N. Balke. Nanoscale insight into lead-free BNT-BT-xKNN. Adv. Funct. Mater., 22, 4208(2012).

    [76] V. Westphal, W. Kleemann, M. D. Glinchuk. Diffuse phase-transitions and random-field-induced domain states of the relaxor ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett., 68, 847(1992).

    [77] F. Li, D. B. Lin, Z. B. Chen, Z. X. Cheng, J. L. Wang, C. C. Li, Z. Xu, Q. W. Huang, X. Z. Liao, L. Q. Chen, T. R. Shrout, S. J. Zhang. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater., 17, 349(2018).

    [78] D. W. Zhang, Y. G. Yao, M. X. Fang, Z. D. Luo, L. X. Zhang, L. L. Li, J. Cui, Z. J. Zhou, J. H. Bian, X. B. Ren, Y. D. Yang. Isothermal phase transition and the transition temperature limitation in the lead-free (1-x)Bi0.5Na0.5 TiO3-xBaTiO(3) system. Acta Mater., 103, 746(2016).

    [79] F. Li, G. R. Chen, X. Liu, J. W. Zhai, B. Shen, S. D. Li, P. Li, K. Yang, H. R. Zeng, H. X. Yan. Type-I pseudo-first-order phase transition induced electrocaloric effect in lead-free Bi0.5Na0.5TiO3-0.06BaTiO(3) ceramics. Appl. Phys. Lett., 110, 5(2017).

    [80] D. Wang, X. Q. Ke, Y. Z. Wang, J. H. Gao, Y. Wang, L. X. Zhang, S. Yang, X. B. Ren. Phase diagram of polar states in doped ferroelectric systems. Phys. Rev. B, 86, 7(2012).

    [81] F. Li, L. Jin, Z. Xu, S. J. Zhang. Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity. Appl. Phys. Rev., 1, 21(2014).

    [82] R. Pirc, R. Blinc, V. S. Vikhnin. Effect of polar nanoregions on giant electrostriction and piezoelectricity in relaxor ferroelectrics. Phys. Rev. B, 69, 4(2004).

    [83] F. Li, Z. Xu, S. J. Zhang. The effect of polar nanoregions on electromechanical properties of relaxor-PbTiO3 crystals: Extracting from electric-field-induced polarization and strain behaviors. Appl. Phys. Lett., 105, 5(2014).

    [84] X. Liu, F. Li, J. W. Zhai, B. Shen, P. Li, Y. Zhang, B. H. Liu. Enhanced electrostrictive effects in nonstoichiometric 0.99Bi(0.505)(Na0.8K0.2)(0.5-x)TiO3-0.01SrTiO(3) lead-free ceramics. Mater. Res. Bull., 97, 215(2018).

    Xinran Wang, Huanghui Nie, Yan Yan, Gang Liu. Enhancement of electro-strain performance of KTaO3 modified 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics[J]. Journal of Advanced Dielectrics, 2022, 12(5): 2250014
    Download Citation