• Laser & Optoelectronics Progress
  • Vol. 56, Issue 21, 211504 (2019)
Deqiang Cheng1、*, Huandong Zhuang1、**, Wenjie Yu1, Chunmeng Bai1, and Xiaoshun Wen2
Author Affiliations
  • 1School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • 2Wanbei Coal and Electricity Group Co., Ltd., Suzhou, Anhui 234000, China
  • show less
    DOI: 10.3788/LOP56.211504 Cite this Article Set citation alerts
    Deqiang Cheng, Huandong Zhuang, Wenjie Yu, Chunmeng Bai, Xiaoshun Wen. Cross-Scale Local Stereo Matching Based on Edge Weighting[J]. Laser & Optoelectronics Progress, 2019, 56(21): 211504 Copy Citation Text show less
    References

    [1] Zhang Z Z, Wang H, Wu Q et al. 3D shape reconstruction based on digital holography of stereo matching techonology[J]. Laser & Optoelectronics Progress, 51, 110901(2014).

    [2] Howard A. Real-time stereo visual odometry for autonomous ground vehicles. [C]∥2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 22-26, 2008, Nice, France. New York: IEEE, 3946-3952(2008).

    [3] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International journal of computer vision, 47, 7-42(2002).

    [4] Besse F, Rother C, Fitzgibbon A et al. PMBP: PatchMatch belief propagation for correspondence field estimation[J]. International Journal of Computer Vision, 110, 2-13(2014).

    [5] Kolmogorov V, Zabih R. Computing visual correspondence with occlusions using graph cuts. [C]∥Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, July 7-14, 2001, Vancouver, BC, Canada. New York: IEEE, 508-515(2001).

    [6] Xu J X, Li Q W, Liu Y et al. Stereo matching algorithm based on color weights and tree dynamic programming[J]. Acta Optica Sinica, 37, 1215007(2017).

    [7] Veksler O. Stereo correspondence by dynamic programming on a tree. [C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), June 20-25, 2005, San Diego, CA, USA. New York: IEEE, 7024320(2005).

    [8] Li J, Qian W X, Chen Q et al. An efficient stereo matching method based on Bayesian theory[J]. Laser & Optoelectronics Progress, 51, 101001(2014).

    [9] Zhang D Y, Huang C[J]. The algorithm of WTA stereo matching based on the human detection method Electronic Test, 2013, 66-68.

    [10] Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 650-656(2006).

    [11] Mattoccia S, Giardino S, Gambini A. Accurate and efficient cost aggregation strategy for stereo correspondence based on approximated joint bilateral filtering[M]. ∥Zha H, Taniguchi R, Maybank S. Computer vision-ACCV 2009. Lecture notes in computer science. Berlin, Heidelberg: Springer, 5995, 371-380(2010).

    [12] Hosni A, Rhemann C, Bleyer M et al. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 504-511(2013).

    [13] He K M, Sun J, Tang X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1397-1409(2013).

    [14] Yang Q X. A non-local cost aggregation method for stereo matching. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 1402-1409(2012).

    [15] Zhang K, Fang Y Q, Min D B et al. Cross-scale cost aggregation for stereo matching. [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 1590-1597(2014).

    [16] Menz M D, Freeman R D. Stereoscopic depth processing in the visual cortex: a coarse-to-fine mechanism[J]. Nature Neuroscience, 6, 59-65(2003).

    [17] Wang K, Li Z W, Zhu C D et al. Local stereo matching algorithm based on secondary guided filtering[J]. Laser & Optoelectronics Progress, 56, 081004(2019).

    [18] Han P X, Zhao M, Chen S Y. Fusion of texture, color and gradient information for stereo matching cost computation. [C]∥2017 2nd International Conference on Image, Vision and Computing (ICIVC), June 2-4, 2017, Chengdu, China. New York: IEEE, 118-121(2017).

    [19] Su X, Chen X D, Xu H Y et al. Adaptive window local matching algorithm based on HSV color space[J]. Laser & Optoelectronics Progress, 55, 031103(2018).

    [20] Mei X, Sun X, Dong W M et al. Segment-tree based cost aggregation for stereo matching. [C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA. New York: IEEE, 313-320(2013).

    [21] Gong W B, Gu G H, Qian W X et al. Stereo matching algorithm based on the inter color correlation and adaptive support weight[J]. Chinese Journal of Lasers, 41, 0812001(2014).

    [22] De-Maeztu L, Mattoccia S, Villanueva A et al. Efficient aggregation via iterative block-based adapting support-weights. [C]∥2011 International Conference on 3D Imaging (IC3D), December 7-8, 2011, Liege, Belgium. New York: IEEE, 13712875(2011).

    [23] Wang Y L, Dunn E, Frahm J M. Increasing the efficiency of local stereo by leveraging smoothness constraints. [C]∥2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, October 13-15, 2012, Zurich, Switzerland. New York: IEEE, 246-253(2012).

    [24] Hu W D, Zhang K, Sun L F et al. Virtual support window for adaptive-weight stereo matching. [C]∥2011 Visual Communications and Image Processing (VCIP), November 6-9, 2011, Tainan, Taiwan, China. New York: IEEE, 12493695(2011).

    Deqiang Cheng, Huandong Zhuang, Wenjie Yu, Chunmeng Bai, Xiaoshun Wen. Cross-Scale Local Stereo Matching Based on Edge Weighting[J]. Laser & Optoelectronics Progress, 2019, 56(21): 211504
    Download Citation