[2] Y J Xing, B Sun, K Gao et al. Research status of thermal protection system and thermal protection materials for aerospace vehicles. Aerosp Mater Technol, 48, 9-15(2018).
[3] C L Li, J Ni, T Guo et al. Research on optical properties of CPI film second surface mirror. Vacuum, 61, 70-73(2024).
[4] C Zhou, H Zhou, Y C He et al. Optical and irradiation-resistant properties of ITO films on F46 and PI substrates. Trans Tianjin Univ, 25, 195-200(2019).
[5] Y C Xiang, H Gao, M Wen et al. Review of spacecraft thermal control materials and applications. Mater Rep, 36, 22050193(2022).
[6] Z Y Li, H Y Han, B Q Liu et al. Tests of environmental degradation performance of thermal control white coating used for long-life manned spacecraft. Spacecr Environ Eng, 37, 102-106(2020).
[7] B Liu, X Xie, X T Gan et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves. Opto-Electron Eng, 50, 230119(2023).
[8] Q Zhu, H W Tian, W X Jiang. Manipulations and applications of radiating waves using electromagnetic metasurfaces. Opto-Electron Eng, 50, 230115(2023).
[9] K Sun, C A Riedel, Y D Wang et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft. ACS Photonics, 5, 495-501(2018).
[10] D U Yildirim, A Ghobadi, M C Soydan et al. Disordered and densely packed ITO nanorods as an excellent lithography-free optical solar reflector metasurface. ACS Photonics, 6, 1812-1822(2019).
[11] K Sun, W Xiao, C Wheeler et al. VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications. Nanophotonics, 11, 4101-4114(2022).
[12] B Y Wu, Q J Mao, H J Li et al. Spacecraft smart radiation device with near-zero solar absorption based on cascaded photonic crystals. Case Stud Therm Eng, 50, 103473(2023).
[13] W Xiao, P Dai, H J Singh et al. Flexible thin film optical solar reflectors with Ta2O5-based multimaterial coatings for space radiative cooling. APL Photonics, 8, 090802(2023).
[14] M Gaspari, S Mengali, M Simeoni et al. Metamaterial-based smart and flexible optical solar reflectors. IOP Conf Ser Mater Sci Eng, 1287, 012003(2023).
[15] Z Qin, D J Meng, F M Yang et al. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators. Opt Express, 29, 20275-20285(2021).
[16] A Cueva, E Carretero. Comparison of the optical properties of different dielectric materials (SnO2, ZnO, AZO, or SiAlNx) used in silver-based low-emissivity coatings. Coatings, 13, 1709(2023).
[17] F M Yang, Z Z Liang, X Y Shi et al. Broadband long-wave infrared metamaterial absorbers based on germanium resonators. Results Phys, 51, 106660(2023).
[18] H U Yang, J D'Archangel, M L Sundheimer et al. Optical dielectric function of silver. Phys Rev B, 91, 235137(2015).
[19] E Shkondin, O Takayama, M E A Panah et al. Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials. Opt Mater Express, 7, 1606-1627(2017).
[20] H X Gao, D P Zhou, W L Cui et al. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands. J Opt Soc Am A, 36, 264-269(2019).
[21] K Liu, Y Y Liu, F Deng et al. Long-wave infrared ultra-broadband perfect absorber with embedded structure. Acta Opt Sin, 41, 2423002(2021).
[22] T Zhang, T M Guo, J Y Yan et al. Design of tunable four-broadband terahertz absorber. Acta Opt Sin, 44, 0523002(2024).
[23] L Shao, Q F Ruan, J F Wang et al. Localized surface plasmons. Physics, 43, 290-298(2014).
[24] S M Zheng, X W Jiang, D F Jiang et al. Dual-band metamaterial absorber based on black phosphorus and its sensing characteristics. Laser Technol, 47, 846-853(2023).