• Opto-Electronic Engineering
  • Vol. 48, Issue 12, 210399 (2021)
Zhou Yi1、2、*, Liang Gaofeng1、2, Wen Zhongquan1、2, Zhang Zhihai1、2, Shang Zhengguo1、2, and Chen Gang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2021.210399 Cite this Article
    Zhou Yi, Liang Gaofeng, Wen Zhongquan, Zhang Zhihai, Shang Zhengguo, Chen Gang. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electronic Engineering, 2021, 48(12): 210399 Copy Citation Text show less
    References

    [1] Lipson S G, Lipson H, Tannhauser D S. Optical Physics[M]. New York: Cambridge University Press, 1995.

    [2] Gan F X, Wang Y. Breaking through the optical diffraction limits, developing the nano-optics and photonics[J]. Acta Opt Sin, 2011, 31(9): 0900104.

    [3] Li S, Kuang C F, Ding Z H, et al. A review on concept and de-velopment of stimulated emission depletion microscopy (STED)[J]. Acta Laser Biol Sin, 2013, 22(2): 103–113.

    [4] Dan D, LeiM, Yao BL, et al. DMD-based LED-illumination Super-resolution and optical sectioning microscopy[J]. Sci Rep, 2013, 3(1): 1116.

    [5] Novotny L, Hecht B. Principles of Nano-Optics[M]. 2nd ed. Cambridge: Cambridge University Press, 2012.

    [6] Pan L, Park Y, Xiong Y, et al. Maskless plasmonic lithography at 22 nm resolution[J]. Sci Rep, 2011, 1(1): 175.

    [7] Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nat Mater, 2008, 7(6): 435–441.

    [8] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Lett, 2012, 12(9): 4932–4936.

    [9] Ishii S, Shalaev V M, Kildishev A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Lett, 2013, 13(1): 159–163.

    [10] Saxena S, Chaudhary R P, Singh A, et al. Plasmonic micro lens for extraordinary transmission of broadband light[J]. Sci Rep, 2014, 4(1): 5586.

    [11] Dong J J, Liu J, Hu B, et al. Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped sur-face gratings[J]. Appl Phys Lett, 2014, 104(1): 011115.

    [12] Huang F M, Chen Y F, de Abajo F J G, et al. Optical su-per-resolution through super-oscillations[J]. J Opt A Pure Appl Opt, 2007, 9(9): S285–S288.

    [13] Huang F M, Zheludev N I. Super-resolution without evanescent waves[J]. Nano Lett, 2009, 9(3): 1249–1254.

    [14] Wen Z Q, He Y H, Li YY, et al. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Opt Express, 2014, 22(18): 22163–22171.

    [15] He Q, Sun S L, Xiao SY, et al. High-efficiency metasurfaces: principles, realizations, and applications[J]. Adv Opt Mater, 2018, 6(19): 1800415.

    [16] Chen S Q, Li Z, Zhang Y B, et al. Phase manipulation of elec-tromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Adv Opt Mater, 2018, 6(13): 1800104.

    [17] Luo X G. Subwavelength optical engineering with metasurface waves[J]. Adv Opt Mater, 2018, 6(7): 1701201.

    [18] Neshev D, Aharonovich I. Optical metasurfaces: new generation building blocks for multi-functional optics[J]. Light Sci Appl, 2018, 7: 58.

    [19] Su V C, Cheng H C, Sun G, et al. Advances in optical metasur-faces: fabrication and applications[Invited][J]. Opt Express, 2018, 26(10): 13148–13182.

    [20] Pu M B, Guo YH, Ma XL, et al. Methodologies for on-demand dispersion engineering of waves in metasurfaces[J]. Adv Opt Mater, 2019, 7(14): 1801376.

    [21] Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasur-face optical elements[J]. Science, 2014, 345(6194): 298–302.

    [22] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nat Nano-technol, 2016, 11(1): 23–36.

    [23] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwave-length resolution imaging[J]. Science, 2016, 352(6290): 1190–1194.

    [24] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937–943.

    [25] Arbabi E, Arbabi M, Kamali S M, et al. Multiwavelength polariza-tion-insensitive lenses based on dielectric metasurfaces with meta-molecules[J]. Optica, 2016, 3(6): 628–633.

    [26] Jia D L, Tian Y, Ma W, et al. Transmissive terahertz metalens with full phase control based on a dielectric metasurface[J]. Opt Lett, 2017, 42(21): 4494–4497.

    [27] Jiang X, Chen H, Li Z Y, et al.All-dielectric metalens for terahertz wave imaging[J]. Opt Express, 2018, 26(11): 14132–14142.

    [28] Chen H, Wu ZX, Li ZY, et al. Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens[J]. Opt Express, 2018, 26(23): 29817–29825.

    [29] Hu YQ,Wang X D, Luo X H, et al.All-dielectric metasurfaces for polarization manipulation: principles and emerging applica-tions[J]. Nanophotonics, 2020, 9(12): 3755–3780.

    [30] Dong Y, Xu ZJ, Li N X, et al. Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform[J]. Nanophotonics, 2020, 9(1): 149–157.

    [31] Kruk S, Hopkins B, Kravchenko I I, et al. Invited Article: broad-band highly efficient dielectric metadevices for polarization con-trol[J]. APL Photonics, 2016, 1(3): 030801.

    [32] Chen C, Gao S L, Xiao X J, et al. Highly efficient metasurface quarter-wave plate with wave front engineering[J]. Adv Photon-ics Res, 2021, 2(3): 2000154.

    [33] Zhang YB,Liu H, Cheng H, et al. Multidimensional manipulation of wave fields based on artificial microstructures[J]. Op-to-Electron Adv, 2020, 3(11): 200002.

    [34] Grosjean T, Courjon D. Polarization filtering induced by imaging systems: effect on image structure[J]. Phys Rev E, 2003, 67(4): 046611.

    [35] Rogers E T F, Zheludev N I. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging[J]. J Opt, 2013, 15(9): 094008.

    [36] Chen G, Wen Z Q, Wu Z X. Optical super-oscillation and su-per-oscillatory optical devices[J]. Acta Phys Sin, 2017, 66(14): 144205.

    [37] Berry M, Zheludev N, Aharonov Y, et al. Roadmap on superos-cillations[J]. J Opt, 2019, 21(5): 053002.

    [38] Chen G, Wen Z Q, Qiu C W. Superoscillation: from physics to optical applications[J]. Light Sci Appl, 2019, 8: 56.

    [39] Rogers K S, Rogers E T F. Realising superoscillations: a review of mathematical tools and their application[J]. J Opt, 2020, 2(4): 042004.

    [40] Zheludev N I, Yuan G H. Optical superoscillation technologies beyond the diffraction limit[J]. Nat Rev Phys, 2022, 4(1): 16–32.

    [41] Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide meta-lenses[J]. Opto-Electron Adv, 2021, 4(2): 200031.

    [42] Yuan G H, Rogers E T F, Zheludev N I. Achromatic su-per-oscillatory lenses with sub-wavelength focusing[J]. Light Sci Appl, 2017, 6(9): e17036.

    [43] Jin N B, Rahmat-Samii Y. Advances in particle swarm optimiza-tion for antenna designs: real-number, binary, single-objective and multiobjective implementations[J]. IEEE Trans Antennas Propag, 2007, 55(3): 556–567.

    [44] Tang D L, Chen L, Liu J J. Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing[J]. Opt Express, 2019, 27(9): 12308–12316.

    [45] Chen L, Liu J, Zhang X H, et al. Achromatic super-oscillatory metasurface through optimized multiwavelength functions for sub-diffraction focusing[J]. Opt Letters, 2020, 45(20): 5772–5775.

    [46] Lu X J, Guo Y H, Pu M B, et al. Switchable polariza-tion-multiplexed super-oscillatory metasurfaces for achromatic sub-diffraction focusing[J]. Opt Express, 2020, 28(26): 39024–39037.

    [47] Dai X M, Dong F L, Zhang K, et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing[J]. ACS Pho-tonics, 2021, 8(8): 2294–2303.

    [48] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nat Nano-technol, 2018, 13(3): 220–226.

    [49] Zhao F, Li ZP, Dai XM, et al. Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens[J]. Adv Opt Mater, 2020, 8(21): 2000842.

    [50] Zhao F, Jiang X, Li S, et al. Optimization-free approach for broadband achromatic metalens of high-numerical-aperture with high-index dielectric metasurface[J]. J Phys D Appl Phys, 2019, 52(50): 505110.

    [51] Lu XJ, Guo YH, Pu M B, et al. Broadband achromatic meta-surfaces for sub-diffraction focusing in the visible[J]. Opt Ex-press, 2021, 29(4): 5947–5958.

    [52] Liu W W, Li Z C, Cheng H, et al. Metasurface enabled wide-angle fourier lens[J]. Adv Mater, 2018, 30(23): 1706368.

    [53] Kalvach A, Szabó Z. Aberration-free flat lens design for a wide range of incident angles[J]. J Opt Soc Am B, 2016, 33(2): A66–A71.

    [54] Groever B, Chen W T, Capasso F. Meta-lens doublet in the visible region[J]. Nano Lett, 2017, 17(8): 4902–4907.

    [55] Arbabi A, Arbabi E, Kamali S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nat Commun, 2016, 7: 13682.

    [56] Pu M B, Li X, Guo YH, et al. Nanoapertures with ordered rota-tions: symmetry transformation and wide-angle flat lensing[J]. Opt Express, 2017, 25(25): 31471–31477.

    [57] Zhang F, Pu M B, Li X, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces[J]. Adv Mater, 2021, 33(11): 2008157.

    [58] Zhang Q, Dong F L, Li H X, et al. High-numerical-aperture di-electric metalens for super-resolution focusing of oblique inci-dent light[J]. Adv Opt Mater, 2020, 8(9): 1901885.

    [59] Li Z, Wang C T, Wang Y Q, et al. Super-oscillatory metasurface doublet for sub-diffraction focusing with a large incident angle[J]. Opt Express, 2021, 29(7): 9991–9999.

    [60] Zhan Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Opt Express, 2004, 12(15): 3377–3382.

    [61] Liu W, Dong D S, Yang H, et al. Robust and high-speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference[J]. Opto-Electron Adv, 2020, 3(8): 200022.

    [62] Gupta D N, Kant N, Kim D E, et al. Electron acceleration to GeV energybya radiallypolarized laser[J]. Phys Lett A, 2007, 368(5): 402–407.

    [63] Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 2018, 5(2): 86–92.

    [64] Yu WT, Ji ZH, Dong DS, et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser Photonics Rev, 2016, 10(1): 147–152.

    [65] Jiang Y S, Li X P, Gu M. Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthallypolarized vortex beam[J]. Opt Lett, 2013, 38(16): 2957–2960.

    [66] Gan ZS, Cao YY, Evans RA, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nat Commun, 2013, 4: 2061.

    [67] Yu A P, Chen G, Zhang Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Sci Rep, 2016, 6: 38859.

    [68] Chen G, Wu Z X, Yu A P, et al. Generation of a sub-diffraction hollowringbyshaping anazimuthallypolarized wave[J]. Sci Rep, 2016, 6: 37776.

    [69] Wu Z X, Jin Q J, Zhang K, et al. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally po-larized wave[J]. Opto-Electron Eng, 2018, 45(4): 170660.

    [70] Chen G, Wu Z X, Yu A P, et al. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Sci Rep, 2017, 7(1): 4697.

    [71] Wu Z X, Jin Q J, Zhang S, et al. Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cy-lindrical vector wave[J]. Opt Express, 2018, 26(7): 7866–7875.

    [72] Wu Z X, Zhang Q, Jiang X, et al. Broadband integrated metalens for creating super-oscillation 3D hollow spot by independent control of azimuthally and radially polarized waves[J]. J Phys D Appl Phy, 2019, 52(41): 415103.

    [73] Zuo R Z, Liu W W, Cheng H, et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Adv Opt Mater, 2018, 6(21): 1800795.

    [74] LiYY, Cao LY, Wen Z Q, et al. Broadband quarter-wave bire-fringent meta-mirrors for generating sub-diffraction vector fields[J]. Opt Lett, 2019, 44(1): 110–113.

    [75] Wu Z X, Dong F L, Zhang S, et al. Broadband dielectric meta-lens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 2020, 7(1): 180–189.

    [76] Zhang Z X, Li Z Y, Lei J, et al. Environmentally robust immersion supercritical lens with an invariable sub-diffraction-limited focal spot[J]. Opt Lett, 2021, 46(10): 2296–2299.

    [77] HuYW,WangSW, JiaJH, et al. Optical superoscillatory waves without side lobes along a symmetric cut[J]. Adv Photonics, 2021, 3(4): 045002.

    [78] Chen H, Wu ZX, Li ZY, et al. Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens[J]. Opt Express, 2018, 26(23): 29817–29825.

    [79] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially pola-rized light beam[J]. Phys Rev Lett, 2003, 91(23): 233901.

    [80] Kitamura K, Sakai K, Noda S. Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam[J]. Opt Express, 2011, 19(15): 13750–13756.

    [81] Yang L X, Xie XS, WangSC, et al. Minimized spot of annular radially polarized focusing beam[J]. Opt Lett, 2013, 38(8): 1331–1333.

    [82] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. New York: Cambridge University Press, 1999.

    [83] Novotny L, Hecht B. Principles of Nano-Optics[M]. 2nd ed. Cambridge: Cambridge University Press, 2012.

    [84] Baumgartl J, Kosmeier S, Mazilu M, et al. Far field subwavelength focusing using optical eigenmodes[J]. Appl Phys Lett, 2011, 98(18): 181109.

    [85] Ecoffey C, Grosjean T. Far-field mapping of the longitudinal magnetic and electric optical fields[J]. Opt Lett, 2013, 38(23): 4974–4977.

    [86] Liu T, Yang S M, Jiang Z D. Electromagnetic exploration of far-field super-focusing nanostructured metasurfaces[J]. Opt Express, 2016, 24(15): 16297–16308.

    [87] Gao J, Yan S K, Zhou Y, et al. Polarization-conversion micro-scopy for imaging the vectorial polarization distribution in fo-cused light[J]. Optica, 2021, 8(7): 984–994.

    [88] Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nat Mater, 2012, 11(5): 432–435.

    [89] Qin F, Huang K, Wu J F, et al. A supercritical lens optical la-bel-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Adv Mater, 2016, 29(8): 1602721.

    [90] Matsunaga D, Kozawa Y, Sato S. Super-oscillation by high-er-order radially polarized Laguerre-Gaussian beams[C]//Proceedings of 2016 Conference on Lasers and Electro-Optics, 2016.

    [91] Wang C T, Tang D L, Wang Y Q, et al. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Sci Rep, 2015, 5: 18485.

    [92] Rogers K S, Bourdakos K N, Yuan G H, et al. Optimising supe-roscillatory spots for far-field super-resolution imaging[J]. Opt Express, 2018, 26(7): 8095–8112.

    [93] Karoui A, Moumni T. Spectral analysis of the finite Hankel transform and circular prolate spheroidal wave functions[J]. J Comput Appl Math, 2009, 233(2): 315–333.

    [94] Yuan G H, Rogers K S, Rogers E T F, et al. Far-field superoscillatorymetamaterial superlens[J]. Phys Rev Appl, 2019, 11(6): 064016.

    [95] Rogers E T F, Quraishe S, Chad J E, et al. New super-oscillatory technology for unlabelled super-resolution cellular imaging with polarisation contrast[J]. Biophys J, 2017, 112(3): 186A.

    [96] Rogers E T F, Quraishe S, Rogers K S, et al. Far-field unlabeled super-resolution imaging with superoscillatory illumination[J]. APL Photonics, 2020, 5(6): 066107.

    [97] Le Gratiet A, Dubreuil M, Rivet S, et al. Scanning Mueller polarimetric microscopy[J]. Opt Lett, 2016, 41(18): 4336–4339.

    [98] Mehta S B, Shribak M, Oldenbourg R. Polarized light imaging of birefringence and diattenuation at high resolution and high sen-sitivity[J]. J Opt, 2013, 15(9): 094007.

    [99] LiW L, He P, Yuan W Z, et al. Efficiency-enhanced and side-lobe-suppressed super-oscillatory lenses for sub-diffraction-limit fluorescence imaging with ultralong working distance[J]. Na-noscale, 2020, 12(13): 7063–7071.

    [100] Yuan G H, Zheludev N I. Detecting nanometric displacements with optical ruler metrology[J]. Science, 2019, 364(6442): 771–775.

    [101] Yuan G H, Rogers E T F, Zheludev N I. “Plasmonics” in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields[J]. Light Sci Appl, 2019, 8: 2.

    Zhou Yi, Liang Gaofeng, Wen Zhongquan, Zhang Zhihai, Shang Zhengguo, Chen Gang. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electronic Engineering, 2021, 48(12): 210399
    Download Citation