• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 10, 2603 (2023)
LI Enzhi*, WANG Mingshan, CHEN Lin, ZENG Min..., CHEN Junchen, YU Bo, GUO Bingshu, MA Zhiyuan and LI Xing|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    LI Enzhi, WANG Mingshan, CHEN Lin, ZENG Min, CHEN Junchen, YU Bo, GUO Bingshu, MA Zhiyuan, LI Xing. In-situ Confinement Growth and Chemically Coupling VS2/Ti3C2Tx MXene as Sodium-Ion Batteries Anode[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2603 Copy Citation Text show less
    References

    [1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.

    [2] FLEISCHMANN S, MITCHELL J B, WANG R C, et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials[J]. Chem Rev, 2020, 120(14): 6738-6782.

    [3] POMERANTSEVA E, BONACCORSO F, FENG X L, et al. Energy storage: the future enabled by nanomaterials[J]. Science, 2019, 366(6468): eaan8285.

    [4] LI Y M, LU Y X, ZHAO C L, et al. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Mater, 2017, 7: 130-151.

    [5] LIU T F, ZHANG Y P, JIANG Z G, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy Environ Sci, 2019, 12(5): 1512-1533.

    [6] NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angew Chem Int Ed Engl, 2018, 57(1): 102-120.

    [7] ZUO W H, LI R Z, ZHOU C, et al. Battery-supercapacitor hybrid devices: Recent progress and future prospects[J]. Adv Sci, 2017, 4(7): 1600539.

    [8] LAI W H, WANG Y X, WANG J Z, et al. Manipulating 2D few-layer metal sulfides as anode towards enhanced sodium-ion batteries[J]. Batter Supercaps, 2020, 3(3): 236-253.

    [9] YU L H, WANG L P, LIAO H B, et al. Understanding fundamentals and reaction mechanisms of electrode materials for Na-ion batteries[J]. Small, 2018, 14(16): e1703338.

    [10] WANG R T, WANG S J, PENG X, et al. Elucidating the intercalation pseudocapacitance mechanism of MoS2-carbon monolayer interoverlapped superstructure: Toward high-performance sodium-ion-based hybrid supercapacitor[J]. ACS Appl Mater Interfaces, 2017, 9(38): 32745-32755.

    [11] LI W B, KHEIMEH SARI H M, LI X F. Emerging layered metallic vanadium disulfide for rechargeable metal-ion batteries: Progress and opportunities[J]. ChemSusChem, 2020, 13(6): 1172-1202.

    [12] LIU C, ZHANG M X, ZHANG X, et al. 2D sandwiched nano heterostructures endow MoSe2/TiO2-x/graphene with high rate and durability for sodium ion capacitor and its solid electrolyte interphase dependent sodiation/desodiation mechanism[J]. Small, 2020, 16(48): e2004457.

    [13] WANG D S, ZHAO Y Y, LIAN R Q, et al. Atomic insight into the structural transformation and anionic/cationic redox reactions of VS2 nanosheets in sodium-ion batteries[J]. J Mater Chem A, 2018, 6(33): 15985-15992.

    [14] YU D X, PANG Q, GAO Y, et al. Hierarchical flower-like VS2 nanosheets - A high rate-capacity and stable anode material for sodium-ion battery[J]. Energy Storage Mater, 2018, 11: 1-7.

    [15] LI W B, HUANG J F, FENG L L, et al. Facile in situ synthesis of crystalline VOOH-coated VS2 microflowers with superior sodium storage performance[J]. J Mater Chem A, 2017, 5(38): 20217-20227.

    [16] LI L, LI Z D, YOSHIMURA A, et al. Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries[J]. Nat Commun, 2019, 10(1): 1764.

    [17] QI H M, WANG L N, ZUO T T, et al. Hollow structure VS2 @Reduced graphene oxide (RGO) architecture for enhanced sodium-ion battery performance[J]. ChemElectroChem, 2020, 7(1): 5.

    [18] XU D M, WANG H W, QIU R Y, et al. Coupling of bowl-like VS2 nanosheet arrays and carbon nanofiber enables ultrafast Na+-Storage and robust flexibility for sodium-ion hybrid capacitors[J]. Energy Storage Mater, 2020, 28: 91-100.

    [19] WANG J L, ZHANG Z, YAN X F, et al. Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery[J]. Nanomicro Lett, 2019, 12(1): 4.

    [20] NAN J X, GUO X, XIAO J, et al. Nanoengineering of 2D MXene-based materials for energy storage applications[J]. Small, 2021, 17(9): 1902085.

    [21] ZHAO J B, WEN J, XIAO J P, et al. Nb2CTx MXene: High capacity and ultra-long cycle capability for lithium-ion battery by regulation of functional groups[J]. J Energy Chem, 2021, 53: 387-395.

    [22] MA L B, LUO D, LI Y T, et al. Architecture design of MXene-based materials for sodium-chemistry based batteries[J]. Nano Energy, 2022, 101: 107590.

    [23] YANG S H, LEE Y J, KANG H, et al. Carbon-coated three-dimensional MXene/iron selenide ball with core-shell structure for high-performance potassium-ion batteries[J]. Nanomicro Lett, 2021, 14(1): 17.

    [24] SUN N, ZHU Q Z, ANASORI B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage[J]. Adv Funct Mater, 2019, 29(51): 1906282.

    [25] LIU X L, WANG M Q, QIN B Y, et al. 2D-2D MXene/ReS2 hybrid from Ti3C2Tx MXene conductive layers supporting ultrathin ReS2 nanosheets for superior sodium storage[J]. Chem Eng J, 2022, 431: 133796.

    [26] WU F, JIANG Y, YE Z Q, et al. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries[J]. J Mater Chem A, 2019, 7(3): 1315-1322.

    [27] CHEN H, CHEN N, ZHANG M N, et al. Ti3C2T x MXene decorated with Sb nanoparticles as anodes material for sodium-ion batteries[J]. Nanotechnology, 2019, 30(13): 134001.

    [28] MA Y, LU L H, ZHANG Y P, et al. C/MoS2@Ti3C2Tx composite flexible films for high performance supercapacitors[J]. Electrochim Acta, 2023, 441: 141826.

    [29] ZHAO D, CLITES M, YING G B, et al. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage[J]. Chem Commun, 2018, 54(36): 4533-4536.

    [30] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[M]//MXenes. New York: Jenny Stanford Publishing, 2023: 415-449.

    [31] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81.

    [32] SHARMA A, MANE P, CHAKRABORTY B, et al. 1T-VS2/MXene hybrid as a superior electrode material for asymmetric supercapacitors: experimental and theoretical investigations[J]. ACS Appl Energy Mater, 2021, 4(12): 14198-14209.

    [33] WANG H C, YOU L, GUAN Y, et al. Rational fabrication of flower-like VS2-decorated Ti3C2 MXene heterojunction nanocomposites for supercapacitance performances[J]. Colloids Surf A Physicochem Eng Aspects, 2021, 629: 127381.

    [34] SUN R M, WEI Q L, SHENG J Z, et al. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage[J]. Nano Energy, 2017, 35: 396-404.

    [35] LI W B, HUANG J F, FENG L L, et al. Nano-grain dependent 3D hierarchical VS2 microrods with enhanced intercalation kinetic for sodium storage properties[J]. J Power Sources, 2018, 398: 91-98.

    [36] GAO Z W, ZHENG W R, LEE L Y S. Highly enhanced pseudocapacitive performance of vanadium-doped MXenes in neutral electrolytes[J]. Small, 2019, 15(40): e1902649.

    [37] XIE L, YAN J A, LIU Z, et al. Synthesis of a two-dimensional MXene modified by chloroacetic acid and its adsorption of uranium[J]. ChemistrySelect, 2022, 7(1): 1-8.

    [38] GUO W W, WU D F. Facile synthesis of VS4/graphene nanocomposites and their visible-light-driven photocatalytic water splitting activities[J]. Int J Hydrog Energy, 2014, 39(30): 16832-16840.

    [39] QIN J W, HAO L L, WANG X, et al. Toward understanding the enhanced pseudocapacitive storage in 3D SnS/MXene architectures enabled by engineered surface reactions[J]. Chemistry, 2020, 26(49): 11231-11240.

    [40] HE W Y, ZHENG X J, PENG J F, et al. Mo-dopant-strengthened basal-plane activity in VS2 for accelerating hydrogen evolution reaction[J]. Chem Eng J, 2020, 396: 125227.

    [41] LI J F, GAO W X, HUANG L Y, et al. In situ formation of few-layered MoS2@N-doped carbon network as high performance anode materials for sodium-ion batteries[J]. Appl Surf Sci, 2022, 571: 151307.

    [42] WANG Y H, ZHANG Y Y, LI H, et al. Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries[J]. Chem Eng J, 2018, 332: 49-56.

    [43] SHEN Z, CAO L, RAHN C D, et al. Least Squares galvanostatic intermittent titration technique (LS-GITT) for accurate solid phase diffusivity measurement[J]. J Electrochem Soc, 2013, 160(10): A1842-A1846.

    [44] FAN R Z, ZHAO C Y, MA J H, et al. Boosting reaction kinetics and improving long cycle life in lamellar VS2/MoS2 heterojunctions for superior sodium storage performance[J]. J Mater Chem A, 2022, 10(2): 939-949.

    [45] XIE X C, SHUAI H L, WU X, et al. Engineering ultra-enlarged interlayer carbon-containing vanadium disulfide composite for high-performance sodium and potassium ion storage[J]. J Alloys Compd, 2020, 847: 156288.

    [46] QI H M, WANG L N, ZUO T T, et al. Hollow structure VS2 @Reduced graphene oxide (RGO) architecture for enhanced sodium-ion battery performance[J]. ChemElectroChem, 2020, 7(1): 5.

    [47] SUN J W, LIAN G, JING L Y, et al. Assembly of flower-like VS2/N-doped porous carbon with expanded (001) plane on rGO for superior Na-ion and K-ion storage[J]. Nano Res, 2022, 15(5): 4108-4116.

    [48] LI P, LIU J A, SUN W Y, et al. Synthesis of coin-like vanadium disulfide and its sodium storage performance[J]. Acta Chim Sinica, 2018, 76(4): 286.

    [49] LI W B, HUANG J F, FENG L L, et al. Facile in situ synthesis of crystalline VOOH-coated VS2 microflowers with superior sodium storage performance[J]. J Mater Chem A, 2017, 5(38): 20217-20227.

    [50] SUN R M, WEI Q L, SHENG J Z, et al. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage[J]. Nano Energy, 2017, 35: 396-404.

    [51] FAN R Z, ZHAO C Y, MA J H, et al. Boosting reaction kinetics and improving long cycle life in lamellar VS2/MoS2 heterojunctions for superior sodium storage performance[J]. J Mater Chem A, 2022, 10(2): 939-949.

    [52] ZANG H T, YANG F, CAO S L, et al. Rose-like VS2 self-assembled from nanosheets with superior sodium storage performance[J]. J Electrochem Soc, 2022, 169(11): 110519.

    [53] YANG C H, OU X, XIONG X H, et al. V5S8-graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries[J]. Energy Environ Sci, 2017, 10(1): 107-113.

    [54] XU L H, CHEN X C, GUO W T, et al. Co-construction of sulfur vacancies and carbon confinement in V5S8/CNFs to induce an ultra-stable performance for half/full sodium-ion and potassium-ion batteries[J]. Nanoscale, 2021, 13(9): 5033-5044.

    [55] SUN R M, WEI Q L, LI Q D, et al. Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery[J]. ACS Appl Mater Interfaces, 2015, 7(37): 20902-20908.

    [56] ZHANG Y J, LI J L, MA L, et al. Insights into the storage mechanism of 3D nanoflower-like V3S4 anode in sodium-ion batteries[J]. Chem Eng J, 2022, 427: 130936.

    LI Enzhi, WANG Mingshan, CHEN Lin, ZENG Min, CHEN Junchen, YU Bo, GUO Bingshu, MA Zhiyuan, LI Xing. In-situ Confinement Growth and Chemically Coupling VS2/Ti3C2Tx MXene as Sodium-Ion Batteries Anode[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2603
    Download Citation