• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 1, 112 (2018)
WANG Hong1、2、*, MA Yue1, LI Song1, ZHANG Zhi-Yu1, HUANG Ke1, and YI Hong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.01.020 Cite this Article
    WANG Hong, MA Yue, LI Song, ZHANG Zhi-Yu, HUANG Ke, YI Hong. Impact of beam divergence angle on forest echo from satellite laser altimeter[J]. Journal of Infrared and Millimeter Waves, 2018, 37(1): 112 Copy Citation Text show less
    References

    [1] Allouis T, Durrieu S, Couteron P. A New Method for Incorporating Hillslope Effects to Improve Canopy-Height Estimates From Large-Footprint LIDAR Waveforms[J]. IEEE Geoscience and Remote Sensing Letters. 2012, 9(4): 730-734.

    [2] Lefsky M A, Cohen W B, Harding D J, et al. Lidar Remote Sensing of Above-Ground Biomass in Three Biomes[J]. Global Ecology & Biogeography, 2002, 11(5):393-399.

    [3] Xing Y Q, de Gier A, Zhang J J, et al. An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: A case study in Changbai mountains, China[J]. International Journal of Applied Earth Observation & Geoinformation, 2010, 12(5):385-392.

    [5] Bye I J, North P R J, Los S O, et al. Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model[J]. Remote Sensing of Environment, 2017, 188:177-189.

    [6] Nie S, Wang C, Zeng H, et al. A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2015, 108:183-190.

    [7] Nelson R, Margolis H, Montesano P, et al. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations[J]. Remote Sensing of Environment, 2017, 188:127-140.

    [8] Tian J, Wang L, Li X, et al. Differentiating Tree and Shrub LAI in a Mixed Forest With ICESat/ GLAS Spaceborne LiDAR [J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing. 2016, 10(1):87-94.

    [9] Hilbert C. and Schmullius C., Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape[J]. Remote Sensing, 2012, 4(8): 2210-2235.

    [10] Mallet C, Bretar F. Full-waveform Topographic Lidar: State-of-the-art[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2009,64(1):1-16.

    [11] WANG Cheng, TANG Fu-Xin, LI Li-Wei, et al. Wavelet analysis for ICESat/GLAS waveform decomposition and its application in average tree height estimation[J]. IEEE Geoscience & Remote Sensing Letters. 2013, 10(1):115-119.

    [13] Harding D J, Carabajal C C. ICESat waveform measurements of within‐footprint topographic relief and vegetation vertical structure[J]. Geophysical Research Letters, 2005, 32(21):741-746.

    [14] MA Yue, LI Song, ZHANG Wen-Hao, et al. Waveform width of a satellite laser altimeter illuminating on sea surface. Applied Optics, 2017, 56(22), 6130-6137.

    [15] MA Yue, WANG Ming-Wei, LI Guo-Yuan, et al. Waveform model of a laser altimeter for an elliptical Gaussian beam. Applied Optics, 2016, 55(8): 3567-3574.

    [16] Lefsky M A, Michael A. A Global Forest Canopy Height Map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System[J]. Geophysical Research Letters,2010, 37(15): 78-82.

    [17] Chen Q. Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry[J]. Remote Sensing of Environment, 2010, 114(7):1610-1627.

    [18] Pang Y, Lefsky M, Sun G, et al. Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar[J]. Remote Sensing of Environment, 2011, 115(11):2798-2809.

    [19] Huang H, Liu C, Wang X, et al. Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2017, 129: 189-199.

    [20] Brenner A C, Zwally H J, Bentley C R, et al., Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights[R]. US: GLAS Algorithm Theoretical Basis Document. Version 5.0, 2011.

    [21] Wagner W, Ullrich A, Ducic V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, 60(2):100-112.

    [22] Hofton M A, Minster J B, Blair J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience & Remote Sensing, 1999, 38(4):1989-1996.

    [23] Gardner C S. Target signatures for laser altimeters: an analysis[J]. Applied Optics, 1982, 21(3): 448-53.

    [24] Gardner C S. Ranging Performance of Satellite Laser Altimeters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):1061-1072.

    [25] Blair J B, Hofton M A. Modeling Laser Altimeter Return Waveforms Over Complex Vegetation Using High-Resolution Elevation Data [J]. Geophysical Research Letters,1999, 26(16):2509-2512.

    CLP Journals

    [1] FU Shuai, NI Jianjun, YAN Jingchun, YU Shuangjiang, LIU Tao. Design of high speed data acquisition and processing system based on clock network[J]. Journal of Terahertz Science and Electronic Information Technology , 2021, 19(2): 228

    WANG Hong, MA Yue, LI Song, ZHANG Zhi-Yu, HUANG Ke, YI Hong. Impact of beam divergence angle on forest echo from satellite laser altimeter[J]. Journal of Infrared and Millimeter Waves, 2018, 37(1): 112
    Download Citation