• Advanced Photonics Nexus
  • Vol. 2, Issue 2, 026005 (2023)
Jingshu Guo1、2、†, Laiwen Yu1, Hengtai Xiang1, Yuqi Zhao1, Chaoyue Liu1, and Daoxin Dai1、2、3、*
Author Affiliations
  • 1Zhejiang University, College of Optical Science and Engineering, International Research Center for Advanced Photonics, State Key Laboratory for Modern Optical Instrumentation, Hangzhou, China
  • 2Zhejiang University, Jiaxing Research Institute, Intelligent Optics & Photonics Research Center, Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, China
  • 3Zhejiang University, Ningbo Research Institute, Ningbo, China
  • show less
    DOI: 10.1117/1.APN.2.2.026005 Cite this Article Set citation alerts
    Jingshu Guo, Laiwen Yu, Hengtai Xiang, Yuqi Zhao, Chaoyue Liu, Daoxin Dai. Realization of advanced passive silicon photonic devices with subwavelength grating structures developed by efficient inverse design[J]. Advanced Photonics Nexus, 2023, 2(2): 026005 Copy Citation Text show less
    References

    [1] N. Margalit et al. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett., 118, 220501(2021).

    [2] W. Bogaerts, L. Chrostowski. Silicon photonics circuit design: methods, tools and challenges. Laser Photonics Rev., 12, 1700237(2018).

    [3] S. Molesky et al. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [4] Z. A. Kudyshev, V. M. Shalaev, A. Boltasseva. Machine learning for integrated quantum photonics. ACS Photonics, 8, 34-46(2021).

    [5] G. Genty et al. Machine learning and applications in ultrafast photonics. Nat. Photonics, 15, 91-101(2021).

    [6] A. Y. Piggott et al. Inverse-designed photonics for semiconductor foundries. ACS Photonics, 7, 569-575(2020).

    [7] M. M. R. Elsawy et al. Numerical optimization methods for metasurfaces. Laser Photonics Rev., 14, 1900445(2020).

    [8] P. R. Wiecha et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Rev., 9, B182-B200(2021).

    [9] A. Y. Piggott et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-378(2015).

    [10] B. Shen et al. An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint. Nat. Photonics, 9, 378-382(2015).

    [11] B. Li et al. Many-objective evolutionary algorithms: a survey. ACM Comput. Surv., 48, 1-35(2015).

    [12] H. Zhou et al. Dielectric metasurfaces enabled ultradensely integrated multidimensional optical system. Laser Photonics Rev., 16, 2100521(2022).

    [13] H. Xie et al. Highly compact and efficient four-mode multiplexer based on pixelated waveguides. IEEE Photonics Technol. Lett., 32, 166-169(2020).

    [14] K. Y. Yang et al. Inverse-designed multi-dimensional silicon photonic transmitters, 1-19(2021).

    [15] N. Hansen et al. Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. Proc. 12th Annu. Conf. Companion on Genetic and Evol. Comput., 1689-1696(2010).

    [16] M. P. Bendsoe, O. Sigmund. Topology Optimization: Theory, Methods, and Applications(2003).

    [17] R. Halir et al. High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler. Opt. Lett., 36, 178-180(2011).

    [18] J. Jiang, M. Chen, J. A. Fan. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater., 6, 679-700(2021).

    [19] J. Peurifoy et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv., 4, eaar4206(2018).

    [20] D. Melati et al. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun., 10, 4775(2019).

    [21] Y. Kiarashinejad, S. Abdollahramezani, A. Adibi. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. NPJ Comput. Mater., 6, 12(2020).

    [22] S. D. Campbell et al. Review of numerical optimization techniques for meta-device design. Opt. Mater. Express, 9, 1842-1863(2019).

    [23] J. Guo et al. Ultra-compact and ultra-broadband guided-mode exchangers on silicon. Laser Photonics Rev., 14, 2000058(2020).

    [24] Y. Zhang et al. A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express, 21, 1310-1316(2013).

    [25] Y. Hu et al. Wavelength division (de)multiplexing based on dispersive self-imaging. Opt. Lett., 36, 4488-4490(2011).

    [26] B.-K. Yang, S.-Y. Shin, D. Zhang. Ultrashort polarization splitter using two-mode interference in silicon photonic wires. IEEE Photonics Technol. Lett., 21, 432-434(2009).

    [27] T. Uematsu et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol., 30, 2421-2426(2012).

    [28] R. Halir et al. Waveguide sub-wavelength structures: a review of principles and applications. Laser Photonics Rev., 9, 25-49(2015).

    [29] H. Guan et al. Compact and low loss 90° optical hybrid on a silicon-on-insulator platform. Opt. Express, 25, 28957-28968(2017).

    [30] N. Hansen. The CMA evolution strategy: a tutorial, 1-39(2016).

    [31] D. Molina et al. An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions. Cogn. Comput., 10, 517-544(2018).

    [32] Y. Miyatake et al. Computational design of efficient grating couplers using artificial intelligence. Jpn. J. Appl. Phys., 59, SGGE09(2020).

    [33] Z. Liu et al. Integrated nanophotonic wavelength router based on an intelligent algorithm. Optica, 6, 1367-1373(2019).

    [34] B. Luyssaert et al. A compact photonic horizontal spot-size converter realized in silicon-on-insulator. IEEE Photonics Technol. Lett., 17, 73-75(2005).

    [35] A. W. Snyder, J. D. Love. Optical Waveguide Theory(1983).

    [36] C. Li, D. Liu, D. Dai. Multimode silicon photonics. Nanophotonics, 8, 227-247(2019).

    [37] D. Dai et al. 10-Channel Mode (de) multiplexer with dual polarizations. Laser Photonics Rev., 12, 1700109(2018).

    [38] NanoSOI Fabrication Service.

    [39] D. Liu et al. Silicon photonic filters. Microw. Opt. Technol. Lett., 63, 2252-2268(2021).

    [40] G. Zhang et al. Experimental demonstration of robust nanophotonic devices optimized by topological inverse design with energy constraint. Photonics Res., 10, 1787-1802(2022).

    [41] L. Su et al. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photonics, 5, 301-305(2018).

    [42] Y. A. Yilmaz et al. Inverse design of efficient and compact 1×N wavelength demultiplexer. Opt. Commun., 454, 124522(2020).

    [43] X. Guo et al. Scalable and compact silicon mode multiplexer via tilt waveguide junctions with shallow etched slots. J. Lightwave Technol., 40, 4682-4688(2022).

    [44] Z. Wang et al. Compact silicon three-mode multiplexer by refractive-index manipulation on a multi-mode interferometer. Opt. Express, 29, 13899-13907(2021).

    [45] H. Xu, D. Dai, Y. Shi. Low-crosstalk and fabrication-tolerant four-channel CWDM filter based on dispersion-engineered Mach-Zehnder interferometers. Opt. Express, 29, 20617-20631(2021).

    [46] D. Liu, M. Zhang, D. Dai. Seismic noise attenuation using unsupervised sparse feature learning. IEEE Trans. Geosci. Remote Sens., 57, 9709-9723(2019).

    [47] E. S. Magden et al. Transmissive silicon photonic dichroic filters with spectrally selective waveguides. Nat. Commun., 9, 3009(2018).

    Jingshu Guo, Laiwen Yu, Hengtai Xiang, Yuqi Zhao, Chaoyue Liu, Daoxin Dai. Realization of advanced passive silicon photonic devices with subwavelength grating structures developed by efficient inverse design[J]. Advanced Photonics Nexus, 2023, 2(2): 026005
    Download Citation