• Photonics Research
  • Vol. 12, Issue 11, 2495 (2024)
Zhibo Yao1, Xinyao Yuan1, Yuanhao Lang1, Fu Li1..., Xiaohan Jiang1, Xueqian Zhang1, Quan Xu1,3,*, Yanfeng Li1,4,* and Jiaguang Han1,2,5,*|Show fewer author(s)
Author Affiliations
  • 1Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
  • 2Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
  • 3e-mail: quanxu@tju.edu.cn
  • 4e-mail: yanfengli@tju.edu.cn
  • 5e-mail: jiaghan@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.525303 Cite this Article Set citation alerts
    Zhibo Yao, Xinyao Yuan, Yuanhao Lang, Fu Li, Xiaohan Jiang, Xueqian Zhang, Quan Xu, Yanfeng Li, Jiaguang Han, "High-efficiency terahertz surface plasmon metacoupler empowered by bilayer bright–dark mode coupling," Photonics Res. 12, 2495 (2024) Copy Citation Text show less
    References

    [1] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [2] N. Fang, H. Lee, C. Sun. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [3] S. Otsuki, K. Tamada, S. Wakida. Wavelength-scanning surface plasmon resonance imaging. Appl. Opt., 44, 3468-3472(2005).

    [4] M. Barelli, M. C. Giordano, P. G. Gucciardi. Self-organized nanogratings for large-area surface plasmon polariton excitation and surface-enhanced Raman spectroscopy sensing. ACS Appl. Nano Mater., 3, 8784-8793(2020).

    [5] K. Kneipp, Y. Wang, H. Kneipp. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett., 78, 1667-1670(1997).

    [6] J. N. Anker, W. P. Hall, O. Lyandres. Biosensing with plasmonic nanosensors. Nat. Mater., 7, 442-453(2008).

    [7] V. Yashunsky, V. Lirtsman, A. Zilbershtein. Surface plasmon-based infrared spectroscopy for cell biosensing. J. Biomed. Opt., 17, 081409(2012).

    [8] Q. Xu, Y. Lang, X. Jiang. Meta-optics inspired surface plasmon devices. Photon. Insights, 2, R02(2023).

    [9] T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi. Surface-plasmon circuitry. Phys. Today, 61, 44-50(2008).

    [10] X. Zhang, Q. Xu, L. Xia. Terahertz surface plasmonic waves: a review. Adv. Photon., 2, 014001(2020).

    [11] F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno. Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys., 3, 324-328(2007).

    [12] Y. Xu, X. Zhang, Z. Tian. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces. Appl. Phys. Lett., 107, 021105(2015).

    [13] L. Laplatine, L. Leroy, R. Calemczuk. Spatial resolution in prism-based surface plasmon resonance microscopy. Opt. Express, 22, 22771-22785(2014).

    [14] H. R. Gwon, S. H. Lee. Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Mater. Trans., 51, 1150-1155(2010).

    [15] Q. Phan, P. Yang, Y. Lo. Surface plasmon resonance prism coupler for gas sensing based on Stokes polarimetry. Sens. Actuators B, 216, 247-254(2015).

    [16] J. Han, Y. Xu, H. Zhang. Tailorable polarization-dependent directional coupling of surface plasmons. Adv. Funct. Mater., 32, 2111000(2022).

    [17] S. Sun, Q. He, S. Xiao. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [18] Y. Ling, L. Huang, W. Hong. Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface. Opt. Express, 25, 13648-13658(2017).

    [19] F. Ding, R. Deshpande, S. I. Bozhevolnyi. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci. Appl., 7, 17178(2018).

    [20] C. Qu, S. Xiao, S. Sun. A theoretical study on the conversion efficiencies of gradient meta-surfaces. Europhys. Lett., 101, 54002(2013).

    [21] H. Chen, H. Ma, J. Wang. Broadband spoof surface plasmon polariton couplers based on transmissive phase gradient metasurface. J. Phys. D, 50, 375104(2017).

    [22] Y. Meng, H. Ma, J. Wang. BroadBand spoof surface plasmon polaritons coupler based on dispersion engineering of metamaterials. Appl. Phys. Lett., 111, 151904(2017).

    [23] Q. Xu, X. Zhang, M. Wei. Efficient metacoupler for complex surface plasmon launching. Adv. Opt. Mater., 6, 1701117(2018).

    [24] A. Pors, M. G. Nielsen, T. Bernardin. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci. Appl., 3, e197(2014).

    [25] Z. Wang, S. Li, X. Zhang. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv. Sci., 7, 2000982(2020).

    [26] T. Liu, Y. Meng, H. Ma. Extraordinary spoof surface plasmon polaritons excitation by linear and circular polarization conversions phase gradient metasurface. J. Phys. D, 53, 045003(2019).

    [27] S. Liu, H. C. Zhang, L. Zhang. Full-state controls of terahertz waves using tensor coding metasurfaces. ACS Appl. Mater. Interfaces, 9, 21503-21514(2017).

    [28] H. Shi, J. Li, A. Zhang. Gradient metasurface with both polarization-controlled directional surface wave coupling and anomalous reflection. IEEE Antennas Wireless Propag. Lett., 14, 104-107(2014).

    [29] L. Huang, X. Chen, B. Bai. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl., 2, e70(2013).

    [30] J. Duan, H. Guo, S. Dong. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci. Rep., 7, 1354(2017).

    [31] X. Yang, J. Luo, D. Gu. High-efficiency electrically direction-controllable spoof surface plasmon polaritons coupler. J. Appl. Phys., 127, 233105(2020).

    [32] J. Wang, S. Qu, H. Ma. High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces. Appl. Phys. Lett., 101, 201104(2012).

    [33] W. Sun, Q. He, S. Sun. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci. Appl., 5, e16003(2016).

    [34] L. Yin, T. Huang, F. Han. High-efficiency terahertz spin-decoupled meta-coupler for spoof surface plasmon excitation and beam steering. Opt. Express, 27, 18928-18939(2019).

    [35] R. Zhu, D. Liu, L. Shen. Huygens’ metasurface-based surface plasmon coupler with near-unit efficiency. Opt. Lett., 47, 5708-5711(2022).

    [36] S. Liu, T. J. Cui, A. Noor. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves. Light Sci. Appl., 7, 18008(2018).

    [37] X. Li, G. Cheng, D. Yan. One-dimensional terahertz dielectric gradient metasurface for broadband spoof surface plasmon polaritons couplers. Opt. Lett., 46, 290-293(2021).

    [38] C. Wu, Y. Cheng, W. Wang. Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling. Appl. Phys. Express, 8, 122001(2015).

    [39] Q. Duan, Y. Liu, S. Chang. Surface plasmonic sensors: sensing mechanism and recent applications. Sensors, 21, 5262(2021).

    [40] K. Wong, K. Tong, Z. Chu. A vision to smart radio environment: Surface wave communication superhighways. IEEE Wireless Commun., 28, 112-119(2020).

    [41] X. Zhang, Z. Tian, W. Yue. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv. Mater., 25, 4567-4572(2013).

    [42] Z. Yao, Y. Ke, Y. Lang. Design and analysis of terahertz filters based on multilayer metamaterials. Appl. Opt., 61, 5799-5805(2022).

    [43] J. Zhao, C. Ouyang, X. Chen. Temperature-controlled terahertz polarization conversion bandwidth. Opt. Express, 29, 21738-21748(2021).

    [44] R. Singh, C. Rockstuhl, F. Lederer. The impact of nearest neighbor interaction on the resonances in terahertz metamaterials. Appl. Phys. Lett., 94, 021116(2009).

    [45] J. Gu, J. Han, X. Lu. A close-ring pair terahertz metamaterial resonating at normal incidence. Opt. Express, 17, 20307-20312(2009).

    [46] Z. Tian, R. Singh, J. Han. Terahertz superconducting plasmonic hole array. Opt. Lett., 35, 3586-3588(2010).

    Zhibo Yao, Xinyao Yuan, Yuanhao Lang, Fu Li, Xiaohan Jiang, Xueqian Zhang, Quan Xu, Yanfeng Li, Jiaguang Han, "High-efficiency terahertz surface plasmon metacoupler empowered by bilayer bright–dark mode coupling," Photonics Res. 12, 2495 (2024)
    Download Citation