• Infrared and Laser Engineering
  • Vol. 52, Issue 11, 20230125 (2023)
Lingjun Shen1,2 and Yingxiong Song1,2
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks, China Shanghai University, Shanghai 200072, China
  • 2Shanghai Institute for Advanced Communication and Data Science, Shanghai 200072, China
  • show less
    DOI: 10.3788/IRLA20230125 Cite this Article
    Lingjun Shen, Yingxiong Song. Numerical simulation of three-layer transmission model for ground-to-satellite turbulent path[J]. Infrared and Laser Engineering, 2023, 52(11): 20230125 Copy Citation Text show less
    Propagation geometry for a random phase screen[14]
    Fig. 1. Propagation geometry for a random phase screen[14]
    Model of atmospheric turbulence in ground-satellite link
    Fig. 2. Model of atmospheric turbulence in ground-satellite link
    The amplitude profile of the transmitting beam at waist spot
    Fig. 3. The amplitude profile of the transmitting beam at waist spot
    Kolmogorov turbulent phase screens with different low frequency compensation
    Fig. 4. Kolmogorov turbulent phase screens with different low frequency compensation
    10/3 Non-Kolmogorov turbulent phase screens with different low frequency compensation
    Fig. 5. 10/3 Non-Kolmogorov turbulent phase screens with different low frequency compensation
    Comparison of phase structure functions in turbulence simulation
    Fig. 6. Comparison of phase structure functions in turbulence simulation
    Mutual coherence factor with different layers
    Fig. 7. Mutual coherence factor with different layers
    Simulation results of phase screen simulations corresponding to three atmospheres without harmonic compensation. (a)-(c) Kolmogorov; (d)-(f) Non-Kolmogorov
    Fig. 8. Simulation results of phase screen simulations corresponding to three atmospheres without harmonic compensation. (a)-(c) Kolmogorov; (d)-(f) Non-Kolmogorov
    Simulation results of phase screen simulations corresponding to three atmospheres with harmonic compensation. (a)-(c) Kolmogorov; (d)-(f) Non-Kolmogorov
    Fig. 9. Simulation results of phase screen simulations corresponding to three atmospheres with harmonic compensation. (a)-(c) Kolmogorov; (d)-(f) Non-Kolmogorov
    Comparison of phase structure functions in turbulence simulation
    Fig. 10. Comparison of phase structure functions in turbulence simulation
    The amplitude profile of the transmitting beam at waist spot. (a)-(c) Kolmogorov; (d)-(f) Non-Kolmogorov
    Fig. 11. The amplitude profile of the transmitting beam at waist spot. (a)-(c) Kolmogorov; (d)-(f) Non-Kolmogorov
    Mutual coherence factors at the observation plane
    Fig. 12. Mutual coherence factors at the observation plane
    ParametersNotionValue
    Wavelength of Gauss beam$ \lambda $0.5 μm
    Gauss beam radius${{w} }_{0}$0.05 m
    Zenith angle$ \theta $
    Outer scale${{L} }_{0}$50 m
    Inner scale${{l} }_{0}$0.001 m
    Turbulence model${\rm{HV}}5/7$${\rm{HV}}5/7$
    Transmitter grid spacing$ {\delta }_{t} $0.0035 m
    Receiver grid spacing$ {\delta }_{n} $0.005 m
    Sample points$ N $512
    Scaling factor$ {\alpha }_{j} $0
    Diameter of the observation aperture$ {D}_{2} $0.5 m
    Table 1. Simulation parameters
    Number of layers2361121
    Mean squared error0.14716.87×10−43.43×10−53.38×10−53.15×10−5
    Table 2. Comparison of theoretical and simulation errors of mutual coherence factor
    Atmospheric layerTurbulence intensity $ {C}_{n}^{2}/{{\rm{m}}}^{-2/3} $Non-Kolmogorov spectral index $ \alpha $Kolmogorov spectral index $ \alpha $
    Boundary$ 9.99\times {10}^{-16} $11/311/3
    Troposphere$ 2.01\times {10}^{-17} $3.511/3
    Stratosphere$ 7.51\times {10}^{-18} $3.311/3
    Table 3. Parameters of each phase screen
    Lingjun Shen, Yingxiong Song. Numerical simulation of three-layer transmission model for ground-to-satellite turbulent path[J]. Infrared and Laser Engineering, 2023, 52(11): 20230125
    Download Citation