• Acta Optica Sinica
  • Vol. 37, Issue 3, 332001 (2017)
Huang Zhangchao1、*, Zhang Wending2, Lin Hongyi1, Xu Yingchao1, Shen Hanxin1, Ruan Jianjian1, Sun Dong1, Wang Heng2, and Zhu Wenzhang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0332001 Cite this Article Set citation alerts
    Huang Zhangchao, Zhang Wending, Lin Hongyi, Xu Yingchao, Shen Hanxin, Ruan Jianjian, Sun Dong, Wang Heng, Zhu Wenzhang. Broadband Second Harmonic Generation of Femtosecond Pulses at Magnitude of GW/cm2[J]. Acta Optica Sinica, 2017, 37(3): 332001 Copy Citation Text show less
    References

    [1] Peng Tianduo, Liu Bowen, Zhang Juhui, et al. Generation of few-cycle femtosecond pulses via coherent synthesis based on self-frequency-shifted solitons in all-solid-state photonic bandgap fiber[J]. Chinese J Lasers, 2015, 42(7): 0702006.

    [2] Ren Jun, Wu Sida, Cheng Zhaochen, et al. Mode-locked femtosecond erbium-doped fiber laser based on graphene oxide versus semiconductor saturable absorber mirror[J]. Chinese J Lasers, 2015, 42(6): 0602013.

    [3] Wang X, Yan L, Si J, et al. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique[J]. Appl Opt, 2014, 53(36): 8395-8399.

    [4] Yu H, Wang X, Zhang H, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1. 06 μm[J]. J Lightwave Technol, 2016, 34(18): 4271-4277.

    [5] Yang Chunhui, Sun Liang, Leng Xuesong, et al. Photorefractive nonlinear optical material lithium niobate crystal[M]. Beijing: Science Press, 2009: 237.

    [6] Mizuuchi K, Yamamoto K, Kato M, et al. Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation[J]. IEEE J Quantum Electron, 1994, 30(7): 1596-1604.

    [7] Bortz M L, Fujimura M, Fejer M M. Increased acceptance bandwidth for quasi-phase-matched second harmonic generation in LiNbO3 waveguides[J]. Electron Lett, 1994, 30(1): 34-35.

    [8] Fujioka N, Ashihara S, Ono H, et al. Group-velocity-matched noncollinear second-harmonic generation in quasi-phase matching[J]. J Opt Soc Am B, 2005, 22(6): 1283-1289.

    [9] Das R, Thyagarajan K. Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation using GaN-based bragg reflection waveguide[J]. Opt Lett, 2007, 32(21): 3128-3130.

    [10] Chen L, Lu S, Wang Y, et al. Bandwidth broadening and spectrum tailoring of second-harmonic generation in transversely nonuniform quasi-phase-matching gratings with spatial spectral dispersion[J]. Optik, 2015, 126: 5149-5153.

    [11] Yu N E, Ro J H, Cha M, et al. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band[J]. Opt Lett, 2002, 27(12): 1046-1048.

    [12] Yu N E, Kurimura S, Kitamura K, et al. Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate[J]. Appl Phys Lett, 2003, 82(20): 3388-3390.

    [13] Zhang J, Chen Y, Lu F, et al. Effect of MgO doping of periodically poled lithium niobate on second-harmonic generation of femtosecond laser pulses[J]. Appl Opt, 2007, 46(32): 7792-7796.

    [14] Zhang J, Chen Y, Lu F, et al. Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN[J]. Opt Express, 2008, 16(10): 6957-6962.

    [15] Zheng Z, Weiner A M, Parameswaran K R, et al. Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off[J]. J Opt Soc Am B, 2002, 19(4): 839-848.

    [16] Zelmon D E, Small D L, Jundt D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate[J]. J Opt Soc Am B, 1997, 14(12): 3319-3322.

    [17] Jiang Baohua, Huang Zhangchao, Lü Fuyun. Numerical simulation of frequency doubling of femtosecond pulses[J]. Chinese Journal of Quantum Electronics, 2013, 30(4): 466-472.

    Huang Zhangchao, Zhang Wending, Lin Hongyi, Xu Yingchao, Shen Hanxin, Ruan Jianjian, Sun Dong, Wang Heng, Zhu Wenzhang. Broadband Second Harmonic Generation of Femtosecond Pulses at Magnitude of GW/cm2[J]. Acta Optica Sinica, 2017, 37(3): 332001
    Download Citation