• Photonics Research
  • Vol. 3, Issue 4, 146 (2015)
Wei Gong1、2, Ailin Liang1、*, Ge Han1, Xin Ma1, and Chengzhi Xiang1
Author Affiliations
  • 1State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University,129 Luoyu Road, Wuhan 430079, China
  • 2Collaborative Innovation Center of Geospatial Technology, 129 Luoyu Road, Wuhan 430079, China
  • show less
    DOI: 10.1364/PRJ.3.000146 Cite this Article Set citation alerts
    Wei Gong, Ailin Liang, Ge Han, Xin Ma, Chengzhi Xiang. Sensitivity of on-line wavelength during retrieval of atmospheric CO2 vertical profile[J]. Photonics Research, 2015, 3(4): 146 Copy Citation Text show less
    References

    [1] C. Field, M. Van Aalst. Climate Change 2014: Impacts, Adaptation, and Vulnerability(2014).

    [2] J. E. Bauer, W. J. Cai, P. A. Raymond, T. S. Bianchi, C. S. Hopkinson, P. A. Regnier. The changing carbon cycle of the coastal ocean. Nature, 504, 61-70(2013).

    [3] I. Y. Fung, S. C. Doney, K. Lindsay, J. John. Evolution of carbon sinks in a changing climate. Proc. Natl. Acad. Sci. USA, 102, 11201-11206(2005).

    [4] D. Bruneau, F. Gibert, P. H. Flamant, J. Pelon. Complementary study of differential absorption lidar optimization in direct and heterodyne detections. Appl. Opt., 45, 4898-4908(2006).

    [5] G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, M. A. Krainak. Laser sounder for active remote sensing measurements of CO2 concentrations. Aerospace Conference, 1-7(2008).

    [6] S. Houweling, W. Hartmann, I. Aben, H. Schrijver, J. Skidmore, G.-J. Roelofs, F.-M. Breon. Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols. Atmos. Chem. Phys., 5, 3003-3013(2005).

    [7] R. J. Engelen, G. L. Stephens. Information content of infrared satellite sounding measurements with respect to CO2. J. Appl. Meteorol., 43, 373-378(2004).

    [8] S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, M. Nakajima. Performance improvement and analysis of a 1.6 μm continuous-wave modulation laser absorption spectrometer system for CO2 sensing. Appl. Opt., 50, 1560-1569(2011).

    [9] J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. P. Mao, X. L. Sun, W. E. Hasselbrack, S. R. Kawa, S. Biraud. Pulsed airborne lidar measurements of atmospheric CO2 column absorption. Tellus B, 62, 770-783(2010).

    [10] G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, S. Houweling. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl. Phys. B, 90, 593-608(2008).

    [11] S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, C. Weaver. Simulation studies for a space-based CO2 lidar mission. Tellus B, 62, 759-769(2010).

    [12] G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements. Appl. Opt., 47, 944-956(2008).

    [13] F. Gibert, P. H. Flamant, J. Cuesta, D. Bruneau. Vertical 2-μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere. J. Atmos. Ocean. Technol., 25, 1477-1497(2008).

    [14] D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, H. Matsueda. Ground-based demonstration of a CO2 remote sensor using a 1.57 μm differential laser absorption spectrometer with direct detection. J. Appl. Remote Sens., 4, 043548(2010).

    [15] L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, C. Minopoli, A. Aiuppa. Volcanic CO2 detection with a DFM/OPA-based lidar. Opt. Lett., 40, 1034-1036(2015).

    [16] J. Mao, S. R. Kawa. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight. Appl. Opt., 43, 914-927(2004).

    [17] G. Han, W. Gong, H. Lin, X. Ma, Z. Xiang. Study on influences of atmospheric factors on vertical co2 profile retrieving from ground-based DIAL at 1.6 μm. IEEE Transactions on Geoscience Electronics, 53, 3221-3234(2015).

    [18] E. Dufour, F.-M. Bréon. Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis. Appl. Opt., 42, 3595-3609(2003).

    [19] R. T. Menzies, D. M. Tratt. Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements. Appl. Opt., 42, 6569-6577(2003).

    [20] D. Lu, W. Pan. Atmospheric profiling synthetic observation system (APSOS). AIP Conf. Proc., 1531, 244-247(2013).

    [21] E. Browell, S. Ismail, W. Grant. Differential absorption lidar (DIAL) measurements from air and space. Appl. Phys. B, 67, 399-410(1998).

    [22] U. Platt, D. Perner. Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV. J. Geophys. Res., 85, 7453-7458(1980).

    [23] K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada. Differential absorption lidar at 1.67 μm for remote sensing of methane leakage. Jpn. J. Appl. Phys., 38, 110(1999).

    [24] P. F. Ambrico, A. Amodeo, P. Di Girolamo, N. Spinelli. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region. Appl. Opt., 39, 6847-6865(2000).

    [25] B. Armstrong. Spectrum line profiles: the Voigt unction. J. Quant. Spectrosc. Radiat. Transfer, 7, 61-88(1967).

    [26] E. V. Browell, S. Ismail, B. E. Grossmann. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region. Appl. Opt., 30, 1517-1524(1991).

    [27] A. Predoi-Cross, A. McKellar, D. C. Benner, V. M. Devi, R. Gamache, C. Miller, R. Toth, L. Brown. Temperature dependences for air-broadened Lorentz half-width and pressure shift coefficients in the 30013 ← 00001 and 30012← 00001 bands of CO2 near 1600 nm. Can. J. Phys., 87, 517-535(2009).

    [28] L. Rothman, I. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. Brown. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 130, 4-50(2013).

    [29] A. Amediek, A. Fix, M. Wirth, G. Ehret. Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide. Appl. Phys. B, 92, 295-302(2008).

    [30] A. J. Krueger, R. A. Minzner. A mid-latitude ozone model for the 1976 US Standard Atmosphere. J. Geophys. Res., 81, 4477-4481(1976).

    [31] K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, M. A. Krainak. Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide. Appl. Opt., 50, 1047-1056(2011).

    [32] G. Wertheim, M. Butler, K. West, D. Buchanan. Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum., 45, 1369-1371(1974).

    CLP Journals

    [1] Wei Gong, Chengzhi Xiang, Feiyue Mao, Xin Ma, Ailin Liang. Wavelet modulus maxima method for on-line wavelength location of pulsed lidar in CO2 differential absorption lidar detection[J]. Photonics Research, 2016, 4(2): 0074

    Wei Gong, Ailin Liang, Ge Han, Xin Ma, Chengzhi Xiang. Sensitivity of on-line wavelength during retrieval of atmospheric CO2 vertical profile[J]. Photonics Research, 2015, 3(4): 146
    Download Citation