• Journal of Inorganic Materials
  • Vol. 35, Issue 1, 29 (2020)
Xiao-Lin DANG, Xiao-Meng FAN*, Xiao-Wei YIN*, Yu-Zhao MA, and Xiao-Kang MA
Author Affiliations
  • Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072, China
  • show less
    DOI: 10.15541/jim20190400 Cite this Article
    Xiao-Lin DANG, Xiao-Meng FAN, Xiao-Wei YIN, Yu-Zhao MA, Xiao-Kang MA. Research Progress on Multi-functional Integration MAX Phases Modified Continuous Fiber-reinforced Ceramic Matrix Composites[J]. Journal of Inorganic Materials, 2020, 35(1): 29 Copy Citation Text show less
    References

    [1] W YIN X, F CHENG L, T ZHANG L et al. Fibre-reinforced multifunctional SiC matrix composite materials. Int. Mater. Rev., 62, 117-172(2017).

    [2] R NASLAIN. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos. Sci. Technol., 64, 155-170(2004).

    [3] W KRENKEL, F BERNDT. C/C-SiC composites for space applications and advanced friction systems. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 412, 177-181(2005).

    [4] S MA Q, T LIU H, Y PAN et al. Research progress on the application of C/SiC composites in scramjet. J. Inorg. Mater., 28, 247-255(2013).

    [6] V NOWOTNY. Strukturchemie einiger verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn. Prog. Solid State Chem., 5, 27-70(1971).

    [7] W BARSOUM M, T EI-RAGHY. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc., 79, 1953-1956(1996).

    [8] M LI, B LI Y, K LUO et al. Synthesis of novel MAX phase Ti3ZnC2via A-site-element-substitution approach. J. Inorg. Mater., 34, 60-64(2019).

    [9] J ZHANG, B LIU, Y WANG J et al. Low-temperature instability of Ti2SnC: a combined transmission electron microscopy, differential scanning calorimetry, and x-ray diffraction investigations. J. Mater. Res., 24, 39-49(2009).

    [10] M SUN Z. Progress in research and development on MAX phases: a family of layered ternary compounds. Int. Mater. Rev., 56, 143-166(2013).

    [11] W BARSOUM M, M RADOVIC. Elastic and mechanical properties of the MAX phases. Ann. Rev. Mater. Res., 41, 195-227(2011).

    [12] W BARSOUM M, T EI-RAGHY. The MAX phases: unique new carbide and nitride materials. Am. Sci., 89, 334-343(2001).

    [13] P YANG C, Q JIAO G, B WANG. Effects of interface properties on tensile strength of ceramic matrix composites. J. Inorg. Mater., 24, 919-923(2009).

    [14] L SNEAD L, D BURCHELL T, Y KATOH. Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature. J. Nucl. Mater., 381, 55-61(2008).

    [15] Y KATOH, K OZAWA, C SHIH et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects. J. Nucl. Mater., 448, 448-476(2014).

    [16] M LI, B ZHOU X, H YANG et al. The critical issues of SiC materials for future nuclear systems. Scripta Mater., 143, 149-153(2018).

    [17] Z MA Y, W YIN X, M FAN X et al. Modification and toughening of 3D needled C/SiC composite by deformable MAX phase-based matrix. Mat. Sci. Eng. A, 712, 397-405(2018).

    [18] R WHITTLE K, G BLACKFORD M, D AUGHTERSON R et al. Radiation tolerance of Mn+1AXn phases, Ti3AlC2 and Ti3SiC2. Acta Mater., 58, 4362-4368(2010).

    [19] X WANG C, F YANG T, L TRACY C et al. Role of the X and n factors in ion-irradiation induced phase transformations of Mn+1AXn phases. Acta Mater., 144, 432-446(2018).

    [20] X WANG C, F YANG T, L TRACY C et al. Disorder in Mn+1AXn phases at the atomic scale. Nat. Commun., 10, 622(2019).

    [21] X WANG C, F YANG T, R XIAO J et al. Irradiation-induced structural transitions in Ti2AlC. Acta Mater., 98, 197-205(2015).

    [22] H WANG X, C ZHOU Y. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. J. Mater. Sci. Technol., 26, 385-416(2010).

    [23] H FAKIH, S JACQUES, O DEZELLUS et al. Phase equilibria and reactive chemical vapor deposition (RCVD) of Ti3SiC2. Journal of Phase Equilibria and Diffusion, 29, 239-246(2008).

    [24] S JACQUES, H FAKIH, C VIALA J. Reactive chemical vapor deposition of Ti3SiC2 with and without pressure pulses: effect on the ternary carbide texture. Thin Solid Films, 518, 5071-5077(2010).

    [25] I FILBERT-DEMUT, N TRAVITZKY, G MOTZ et al. Polymer derived ceramics reinforced with Ti3SiC2 coated SiC fibers: a feasibility study. Mater. Lett., 145, 229-231(2015).

    [26] I FILBERT-DEMUT, G BEI, T HÖSCHEN et al. Influence of Ti3SiC2 fiber coating on interface and matrix cracking in an SiC fiber-reinforced polymer-derived ceramic. Adv. Eng. Mater., 17, 1142-1148(2015).

    [27] G LEE H, D KIM, S JEONG Y et al. Formation of Ti3SiC2 interphase of SiC fiber by electrophoretic deposition method. Journal of the Korean Ceramic Society, 53, 87-92(2016).

    [28] G LEE H, D KIM, Y PARK J et al. Formation of Ti3SiC2 interphase coating on SiCf/SiC composite by electrophoretic deposition. Inter. J. Appl. Ceram. Tec., 15, 602-610(2017).

    [29] M LI, K WANG, J WANG et al. Preparation of TiC/Ti2AlC coating on carbon fiber and investigation of the oxidation resistance properties. J. Am. Ceram. Soc., 101, 5269-5280(2018).

    [30] J GILBERT C, R BLOYER D, W BARSOUM M et al. Fatigue- crack growth and fracture properties of coarse and fine-grained Ti3SiC2. Scripta Mater., 42, 761-767(2000).

    [31] W YIN X, S HE S, T ZHANG L et al. Fabrication and characterization of a carbon fibre reinforced carbon-silicon carbide- titanium silicon carbide hybrid matrix composite. Mat. Sci. Eng. A-Struct., 527, 835-841(2010).

    [32] Y LU C, W YIN X, M LI X. A novel in-situ synthesis route of Ti3SiC2-SiC composite by liquid silicon infiltration. J. Inorg. Mater., 25, 1003-1008(2010).

    [33] M FAN X, W YIN X, L WANG et al. Processing, microstructure and ablation behavior of C/SiC-Ti3SiC2 composites fabricated by liquid silicon infiltration. Corros. Sci., 74, 98-105(2013).

    [34] K MA X, W YIN X, M FAN X et al. Microstructure and properties of dense Tyranno-ZMI SiC/SiC containing Ti3Si(Al)C2 with plastic deformation toughening mechanism. J. Eur. Ceram. Soc., 38, 1069-1078(2018).

    [35] N DONG, Q CHEN L, W YIN X et al. Fabrication and electromagnetic interference shielding effectiveness of Ti3Si(Al)C2 modified Al2O3/SiC composites. Ceram. Int., 42, 9448-9454(2016).

    [36] M FAN X, W YIN X, Q CHEN L et al. Mechanical behavior and electromagnetic interference shielding properties of C/SiC-Ti3Si(Al)C2. J. Am. Ceram. Soc., 99, 1717-1724(2016).

    [37] F LENZ, W KRENKEL. Fabrication of fiber composites with a MAX phase matrix by reactive melt infiltration. IOP Conference Series: Materials Science and Engineering, 18, 202030(2011).

    [38] F LENZ, W KRENKEL. Carbon fiber reinforced ceramics based on reactive melt infiltration processes. Journal of the Korean Ceramic Society, 49, 287-294(2012).

    [39] B SPENCER C, M CÓRDOBA J, H OBANDO N et al. The reactivity of Ti2AlC and Ti3SiC2 with SiC fibers and powders up to temperatures of 1550 ℃. J. Am. Ceram. Soc., 94, 1737-1743(2011).

    [40] W ZHANG J, F HU C, G WANG Y et al. Interfacial reactions between polymer derived SiC fiber and Ti3Si(Al)C2. Key Eng. Mater., 544, 238-244(2013).

    [41] Q GUO S, F HU C, H GAO et al. SiC(SCS-6) fiber-reinforced Ti3AlC2 matrix composites: interfacial characterization and mechanical behavior. J. Eur. Ceram. Soc., 35, 1375-1384(2015).

    [42] Q GUO S. Improvement of mechanical properties of SiC(SCS-6) fibre-reinforced Ti3AlC2 matrix composites with Ti barrier layer. J. Eur. Ceram. Soc., 36, 1349-1358(2016).

    [43] S YANG J, M DONG S, Y XU C. Mechanical response and microstructure of 2D carbon fiber reinforced ceramic matrix composites with SiC and Ti3SiC2 fillers. Ceram. Int., 42, 3019-3027(2016).

    [44] S YANG J, M DONG S, P HE et al. Fabrication Fabrication and properties of Cf/Ti3SiC2-SiC composites using Ti3SiC2 as inert filler. Key Eng. Mater., 681-684(2012).

    [45] Y MU, C ZHOU W, F WAN et al. High-temperature dielectric and electromagnetic interference shielding properties of SiCf/SiC composites using Ti3SiC2 as inert filler. Composites Part A: Applied Science and Manufacturing, 77, 195-203(2015).

    [46] M SONG G, B LI S, X ZHAO C et al. Ultra-high temperature ablation behavior of Ti2AlC ceramics under an oxyacetylene flame. J. Eur. Ceram. Soc., 31, 855-862(2011).

    [47] T SHEN X, Z LI K, J LI H et al. Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites. Carbon, 48, 344-351(2010).

    [48] M SONG G, J WANG Y, Y ZHOU. Elevated temperature ablation resistance and thermophysical properties of tungsten matrix composites reinforced with ZrC particles. J. Mater. Sci., 36, 4625-4631(2001).

    [49] J HU S, B LI S, L LI H et al. Oxyacetylene torch testing and microstructural characterization of a Cr2AlC ceramic. J. Alloys Compd., 740, 77-81(2018).

    [50] L LI H, B LI S, Q ZHANG L et al. Synthesis and ultra-high temperature ablation behavior of a ZrC/Cr2AlC composite. Ceram. Int., 42, 5686-5692(2016).

    [51] C ZHOU Y, F HE L, J LIN Z et al. Synthesis and structure- property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems. J. Eur. Ceram. Soc., 33, 2831-2865(2013).

    [52] Z MA Y, W YIN X, M FAN X et al. Ablation behavior of Zr-Al(Si)-C layered carbides modified 3D needled C/SiC composites. Adv. Eng. Mater., 21, 1800936(2019).

    [53] M FAN X, W YIN X, Z CAI Y et al. Mechanical and electromagnetic interference shielding behavior of C/SiC composite containing Ti3SiC2.. Adv. Eng. Mater., 20, 1700590(2018).

    [54] M LI X, T ZHANG L, W YIN X et al. Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4-SiC ceramic. Scripta Mater., 63, 657-660(2010).

    [55] Y MU, C ZHOU W, C WANG et al. Mechanical and electromagnetic shielding properties of SiCf/SiC composites fabricated by combined CVI and PIP process.. Ceram. Int., 40, 10037-10041(2014).

    [56] Y WANG H, M ZHU D, Y MU et al. Effect of SiC/C preform densities on the mechanical and electromagnetic interference shielding properties of dual matrix SiC/C-SiC composites. Ceram. Int., 41, 14094-14100(2015).

    Xiao-Lin DANG, Xiao-Meng FAN, Xiao-Wei YIN, Yu-Zhao MA, Xiao-Kang MA. Research Progress on Multi-functional Integration MAX Phases Modified Continuous Fiber-reinforced Ceramic Matrix Composites[J]. Journal of Inorganic Materials, 2020, 35(1): 29
    Download Citation