• Acta Optica Sinica
  • Vol. 41, Issue 10, 1036001 (2021)
Xu Chen1, Xiangyu Jin1, Qingting Wang1, Shiyu Lu1, Qiang Hao1, Jie Wang4, Hongyu Nie5, Ming Yan2, Kangwen Yang1、*, and Heping Zeng1、2、3
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Chongqing Institute of East China Normal University, Chongqing 401121, China
  • 3Jinan Institute of Quantum Technology, Jinan, Shandong 250101, China
  • 4Power Science Research Institute of State Grid Sichuan Electric Power Company, Chengdu, Sichuan 610041, China
  • 5Maintenance Company of State Grid Sichuan Electric Power Company, Chengdu, Sichuan 610041, China
  • show less
    DOI: 10.3788/AOS202141.1036001 Cite this Article Set citation alerts
    Xu Chen, Xiangyu Jin, Qingting Wang, Shiyu Lu, Qiang Hao, Jie Wang, Hongyu Nie, Ming Yan, Kangwen Yang, Heping Zeng. A Miniaturized Adaptive Dual-Comb Based on Piezoelectric Transducer and Multi-stage Temperature Feedback[J]. Acta Optica Sinica, 2021, 41(10): 1036001 Copy Citation Text show less
    References

    [1] Guay P, Genest J, Fleisher A J et al. Precision spectroscopy of H 13CN using a free-running, all-fiber dual electro-optic frequency comb system[J]. Optics Letters, 43, 1407-1410(2018). http://www.ncbi.nlm.nih.gov/pubmed/29543247

    [2] Holzwarth R, Udem T, Hansch T W et al. Optical frequency synthesizer for precision spectroscopy[J]. Physical Review Letters, 85, 2264-2267(2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000085000011002264000001&idtype=cvips&gifs=Yes

    [3] Ge J M, Yan M, Tan Q G et al. Theoretical analysis of real-time high-resolution phase measurement method based on optical combs[J]. Chinese Journal of Lasers, 47, 1104005(2020).

    [4] Predehl K, Grosche G, Raupach S M et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 336, 441-444(2012). http://www.ncbi.nlm.nih.gov/pubmed/22539714

    [5] Steinmetz T, Wilken T, Hauck C A et al. Laser frequency combs for astronomical observations[J]. Science, 321, 1335-1337(2008). http://europepmc.org/abstract/med/18772434

    [6] Wu Y J, Ye H Q, Han J et al. Astronomical laser frequency comb for high resolution spectrograph of a 2.16-m telescope[J]. Acta Optica Sinica, 36, 0614001(2016).

    [7] Cui P F, Yang L H, Lin J R et al. Application of femtosecond optical frequency comb in precise absolute distance measurement[J]. Laser & Optoelectronics Progress, 55, 120011(2018).

    [8] Rieker G B, Giorgetta F R, Swann W C et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths[J]. Optica, 1, 290-298(2014). http://www.opticsinfobase.org/abstract.cfm?uri=optica-1-5-290

    [9] Coburn S, Alden C B, Wright R et al. Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer[J]. Optica, 5, 320-327(2018). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-5-4-320

    [10] Chen K, Wu T, Chen T et al. Spectral focusing dual-comb coherent anti-stokes Raman spectroscopic imaging[J]. Optics Letters, 42, 3634-3637(2017). http://www.ncbi.nlm.nih.gov/pubmed/28914920

    [11] Coddington I, Swann W C, Newbury N R et al. Coherent multi heterodyne spectroscopy using stabilized optical frequency combs[J]. Physical Review Letters, 100, 013902(2008).

    [12] Deschênes J D, Giaccari P, Genest J et al. Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry[J]. Optics Express, 18, 23358-23370(2010).

    [13] Lu Q, Shi L, Mao Q H et al. Research advances in dual-comb spectroscopy[J]. Chinese Journal of Lasers, 45, 0400001(2018).

    [14] Yang H L, Wei H Y, Li Y et al. Technique progress of high-precision gas absorption spectroscopy with femtosecond optical frequency comb[J]. Spectroscopy and Spectral Analysis, 34, 335-339(2014).

    [15] Wu X J, Li Y, Wei H Y et al. Femtosecond optical frequency combs for precision measurement applications[J]. Laser & Optoelectronics Progress, 49, 030001(2012).

    [16] Zhang Z G. Advances in high repetition rate femtosecond fiber lasers[J]. Acta Optica Sinica, 31, 0900130(2011).

    [17] Lu M J, Wu T, Li Y et al. Dual-comb nonlinear spectroscopy[J]. Laser & Optoelectronics Progress, 58, 0100001(2020).

    [18] Schiller S. Spectrometry with frequency combs[J]. Optics Letters, 27, 766-768(2002).

    [19] Keilmann F, Gohle C, Holzwarth R et al. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics Letters, 29, 1542-1544(2004).

    [20] Giaccari P, Deschênes J D, Saucier P et al. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method[J]. Optics Express, 16, 4347-4365(2008).

    [21] Ideguchi T, Poisson A, Guelachvili G et al. Adaptive real-time dual-comb spectroscopy[J]. Nature Communications, 5, 3375(2014).

    [22] Yang L, Shen X L, Yang K W et al. Analysis and realization of adaptive dual-comb spectroscopy[J]. Acta Optica Sinica, 38, 0514002(2018).

    [23] Dai S Y, Zhou D W, Xia W et al. Research on a miniaturized erbium-doped fiber optical frequency comb. C]∥Summary of the Report of the 16th National Quantum Optics Conference, Yanji, Jilin, China. Beijing: Chinese Physical Society, 79(2014).

    [24] Cossel K C, Waxman E M, Giorgetta F R et al. Open-path dual-comb spectroscopy to an airborne retroreflector[J]. Optica, 4, 724-728(2017). http://europepmc.org/abstract/MED/29774228

    [25] Cai Y J, Pan R, Zhang T et al. Compact, robust, and repetition-rate-locked all-polarization-maintaining femtosecond fiber laser system[J]. Optical Engineering, 58, 046108(2019). http://www.researchgate.net/publication/332585147_Compact_robust_and_repetition-rate-locked_all-polarization-maintaining_femtosecond_fiber_laser_system

    [26] Ycas G, Giorgetta F R, Friedlein J T et al. Compact mid-infrared dual-comb spectrometer for outdoor spectroscopy[J]. Optics Express, 28, 14740-14752(2020). http://www.researchgate.net/publication/340792122_Compact_mid-infrared_dual-comb_spectrometer_for_outdoor_spectroscopy

    [27] Li X H, Feng J J, Mao W J et al. Emerging uniform Cu2O nanocubes for 251st harmonic ultrashort pulse generation[J]. Journal of Materials Chemistry C, 8, 14386-14392(2020). http://pubs.rsc.org/en/content/articlelanding/2020/tc/d0tc03622f

    [28] Zhao Y, Wang W, Li X H et al. Functional porous MOF-derived CuO octahedra for harmonic soliton molecule pulses generation[J]. ACS Photonics, 7, 2440-2447(2020). http://pubs.acs.org/doi/10.1021/acsphotonics.0c00520

    [29] Feng J J, Li X H, Zhu G Q et al. Emerging high-performance SnS/CdS nanoflower heterojunction for ultrafast photonics[J]. ACS Applied Materials & Interfaces, 12, 43098-43105(2020). http://pubs.acs.org/doi/10.1021/acsami.0c12907

    [30] Feng J J, Li X H, Shi Z J et al. Silver sulfide nanosheets: 2D ductile transition metal chalcogenides (TMCs): novel high-performance Ag2S nanosheets for ultrafast photonics (advanced optical materials 6/2020)[J]. Advanced Optical Materials, 8, 2070023(2020). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adom.202070023

    [31] Yan P P, Gong H, Ye F et al. All polarization-maintaining erbium-doped fiber based optical comb[J]. Chinese Journal of Lasers, 47, 0115001(2020).

    Xu Chen, Xiangyu Jin, Qingting Wang, Shiyu Lu, Qiang Hao, Jie Wang, Hongyu Nie, Ming Yan, Kangwen Yang, Heping Zeng. A Miniaturized Adaptive Dual-Comb Based on Piezoelectric Transducer and Multi-stage Temperature Feedback[J]. Acta Optica Sinica, 2021, 41(10): 1036001
    Download Citation