• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101002 (2022)
Baoquan Yao*, Ke Yang, Shuyi Mi, Junhui Li, Disheng Wei, Jinwen Tang, Long Chen, Xiaoxiao Hua, Chao Yang, Xiaoming Duan, Tongyu Dai, Youlun Ju, and Yuezhu Wang
Author Affiliations
  • National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • show less
    DOI: 10.3788/CJL202249.0101002 Cite this Article Set citation alerts
    Baoquan Yao, Ke Yang, Shuyi Mi, Junhui Li, Disheng Wei, Jinwen Tang, Long Chen, Xiaoxiao Hua, Chao Yang, Xiaoming Duan, Tongyu Dai, Youlun Ju, Yuezhu Wang. Research Progress of High-Power Ho∶YAG Lasers and Its Application for Pumping Mid-Far-Infrared Nonlinear Frequency Conversion in ZGP, BGSe and CdSe Crystals[J]. Chinese Journal of Lasers, 2022, 49(1): 0101002 Copy Citation Text show less
    References

    [1] Boyd D S, Petitcolin F. Remote sensing of the terrestrial environment using middle infrared radiation (3.05.0 μm)[J]. International Journal of Remote Sensing, 25, 3343-3368(2004).

    [2] Godard A. Infrared (212 μm) solid-state laser sources: a review[J]. Comptes Rendus Physique, 8, 1100-1128(2007).

    [3] Vaicikauskas V, Kabelka V, Kuprionis Z et al. Infrared DIAL for remote sensing of atmospheric pollutants[J]. Proceedings of SPIE, 5958, 59581K(2005).

    [4] Vaicikauskas V, Kuprionis Z, Kaucikas M et al. Mid-infrared all solid state DIAL for remote sensing of hazardous chemical agents[J]. Proceedings of SPIE, 6214, 62140E(2006).

    [5] Boyko A A, Karapuzikov A I, Chernikov S B et al. Waveguide RF excited 13C16O2-laser tunable from 11.04 μm to 11.31 μm for lidar applications[J]. Proceedings of SPIE, 9292, 929238(2014).

    [6] Yang J Y, Gong F Q, Liu R et al. Application and progress of mid-infrared laser in optoelectronic countermeasure field[J]. Flight Control & Detection, 3, 34-42(2020).

    [7] Liu X X, Han J H, Cai H et al. Review of high repetition-rate mid-infrared lasers for photoelectric countermeasures[J]. Laser Technology, 45, 271-279(2021).

    [8] Mirov S, Fedorov V, Martyshkin D et al. High average power Fe:ZnSe and Cr:ZnSe mid-IR solid state lasers[C], AW4A.1(2015).

    [9] Frolov M P, Korostelin Y V, Kozlovsky V I et al. Efficient 10-J pulsed Fe:ZnSe laser at 4100 nm[C], 16251523(2016).

    [10] Velikanov S D, Gavrishchuk E M, Zaretsky N A et al. Repetitively pulsed Fe∶ZnSe laser with an average output power of 20 W at room temperature of the polycrystalline active element[J]. Quantum Electronics, 47, 303-307(2017).

    [11] Pan Q K, Xie J J, Chen F et al. Transversal parasitic oscillation suppression in high gain pulsed Fe2+∶ZnSe laser at room temperature[J]. Optics & Laser Technology, 127, 106151(2020).

    [12] Bohn W, von Buelow H, Dass S et al. High-power supersonic CO laser on fundamental and overtone transitions[J]. Quantum Electronics, 35, 1126-1130(2005).

    [13] Lu Q Y, Bai Y, Bandyopadhyay N et al. Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output[J]. Applied Physics Letters, 97, 231119(2010).

    [14] Benson S, Douglas D, Neil G et al. The Jefferson Lab free electron laser program[J]. Journal of Physics: Conference Series, 299, 012014(2011).

    [15] Bulaev V D, Gusev V S, Kazantsev S Y et al. High-power repetitively pulsed electric-discharge HF laser[J]. Quantum Electronics, 40, 615-618(2010).

    [16] Polyanskiy M, Pogorelsky I, Babzien M et al. High-peak-power long-wave infrared lasers with CO2 amplifiers[J]. Photonics, 8, 101(2021).

    [17] Xie F, Caneau C, Leblanc H P et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1200407(2013).

    [18] Xu M H, Wu J M, Li B W et al. Efficient mid-infrared difference-frequency generation technology based on passive all-optical synchronization[J]. Acta Optica Sinica, 40, 2036001(2020).

    [19] Li S S, Wang B Y, Zhou G J et al. 1 W mid infrared fiber output quantum cascade laser[J]. Chinese Journal of Lasers, 47, 1116001(2020).

    [20] Li H T, He Z G, Wu F F et al. Hefei infrared free-electron laser facility[J]. Chinese Journal of Lasers, 48, 1700001(2021).

    [21] Frolov M P, Korostelin Y V, Kozlovsky V I et al. Study of a 2-J pulsed Fe∶ZnSe 4-μm laser[J]. Laser Physics Letters, 10, 125001(2013).

    [22] Eckardt R C, Nabors C D, Kozlovsky W J et al. Optical parametric oscillator frequency tuning and control[J]. Journal of the Optical Society of America B, 8, 646-667(1991).

    [23] Qian C, Yao B, Ju Y et al. 110.4 mJ, 1 kHz repetition rate, Ho∶YAG master oscillator power amplifier[J]. Applied Optics, 58, 879-882(2019).

    [24] Zhao B R, Yao B Q, Qian C P et al. 231 W dual-end-pumped Ho∶YAG MOPA system and its application to a mid-infrared ZGP OPO[J]. Optics Letters, 43, 5989-5992(2018).

    [25] Liu G, Mi S, Yang K et al. 161 W middle infrared ZnGeP2 MOPA system pumped by 300 W-class Ho∶YAG MOPA system[J]. Optics Letters, 46, 82-85(2021).

    [26] Zelmon D E, Hanning E A, Schunemann P G. Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 μm to 9 μm with implications for phase matching in optical frequency-conversion devices[J]. Journal of the Optical Society of America B, 18, 1307-1310(2001).

    [27] Vodopyanov K L, Voevodin V G. Type I and II ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 μm and 10 μm[J]. Optics communications, 117, 277-282(1995).

    [28] Schellhorn M, Spindler G, Eichhorn M. Mid-infrared ZGP OPO with divergence compensation and high beam quality[J]. Optics Express, 26, 1402-1410(2018).

    [29] Qian C P, Yao B Q, Zhao B R et al. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation[J]. Optics Letters, 44, 715-718(2019).

    [30] Liu G Y, Chen Y, Yao B Q et al. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 μm[J]. Optics Letters, 45, 2347-2350(2020).

    [31] Qian C, Duan X, Yao B et al. 11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier[J]. Optics Express, 26, 30195-30201(2018).

    [32] Yelisseyev A P, Lobanov S I, Krinitsin P G et al. The optical properties of the nonlinear crystal BaGa4Se7[J]. Optical Materials, 99, 109564(2020).

    [33] Kostyukova N Y, Boyko A A, Eryshin E Y et al. Comparative analysis of optical damage in advanced Barium chalcogenides nonlinear crystals at 1-μm and 2-μm[C], cd_p_14.

    [34] Badikov V, Badikov D, Shevyrdyaeva G et al. Phase-matching properties of BaGa4S7 and BaGa4Se7: wide-bandgap nonlinear crystals for the mid-infrared[C], JWB4(2011).

    [35] Yang K, Liu G, Li C et al. Research on performance improvement technology of a BaGa4Se7 mid-infrared optical parametric oscillator[J]. Optics Letters, 45, 6418-6421(2020).

    [36] Liu G, Chen Y, Li Z et al. High-beam-quality 2.1 μm pumped mid-infrared type-II phase-matching BaGa4Se7 optical parametric oscillator with a ZnGeP2 amplifier[J]. Optics Letters, 45, 3805-3808(2020).

    [37] Yuan J H, Duan X M, Yao B Q et al. Tunable 10- to 11-μm CdSe optical parametric oscillator pumped by a 2.1-μm Ho∶YAG laser[J]. Applied Physics B, 122, 1-4(2016).

    [38] Ni Y B, Wu H X, Mao M S et al. Growth and characterization of mid-far infrared optical material CdSe crystal[J]. Optical Materials Express, 8, 1796-1805(2018).

    [39] Dmitriev V G, Gurzadyan G G, Nikogosyan D N. Properties of nonlinear optical crystals[M]. Dmitriev V G, Gurzadyan G G, Nikogosyan D N. Handbook of nonlinear optical crystals. Springer series in optical sciences, 64, 67-288(1997).

    [40] Chen Y, Liu G, Yang C et al. 1 W, 10.1 μm, CdSe optical parametric oscillator with continuous-wave seed injection[J]. Optics Letters, 45, 2119-2122(2020).

    [41] Chen Y, Yang C, Liu G Y et al. 11 μm, high beam quality idler-resonant CdSe optical parametric oscillator with continuous-wave injection-seeded at 2.58 μm[J]. Optics Express, 28, 17056-17063(2020).

    Baoquan Yao, Ke Yang, Shuyi Mi, Junhui Li, Disheng Wei, Jinwen Tang, Long Chen, Xiaoxiao Hua, Chao Yang, Xiaoming Duan, Tongyu Dai, Youlun Ju, Yuezhu Wang. Research Progress of High-Power Ho∶YAG Lasers and Its Application for Pumping Mid-Far-Infrared Nonlinear Frequency Conversion in ZGP, BGSe and CdSe Crystals[J]. Chinese Journal of Lasers, 2022, 49(1): 0101002
    Download Citation