• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101002 (2022)
Baoquan Yao*, Ke Yang, Shuyi Mi, Junhui Li, Disheng Wei, Jinwen Tang, Long Chen, Xiaoxiao Hua, Chao Yang, Xiaoming Duan, Tongyu Dai, Youlun Ju, and Yuezhu Wang
Author Affiliations
  • National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • show less
    DOI: 10.3788/CJL202249.0101002 Cite this Article Set citation alerts
    Baoquan Yao, Ke Yang, Shuyi Mi, Junhui Li, Disheng Wei, Jinwen Tang, Long Chen, Xiaoxiao Hua, Chao Yang, Xiaoming Duan, Tongyu Dai, Youlun Ju, Yuezhu Wang. Research Progress of High-Power Ho∶YAG Lasers and Its Application for Pumping Mid-Far-Infrared Nonlinear Frequency Conversion in ZGP, BGSe and CdSe Crystals[J]. Chinese Journal of Lasers, 2022, 49(1): 0101002 Copy Citation Text show less
    Schematic of optical path for 1 kHz Ho∶YAG Q-switched laser[23]
    Fig. 1. Schematic of optical path for 1 kHz Ho∶YAG Q-switched laser[23]
    Average output power of second stage amplifier versus pump power [23]
    Fig. 2. Average output power of second stage amplifier versus pump power [23]
    Schematic of optical path for 10 kHz Ho∶YAG Q-switched laser[24]
    Fig. 3. Schematic of optical path for 10 kHz Ho∶YAG Q-switched laser[24]
    M2 and transverse 2D beam profile at 231 W [24]
    Fig. 4. M2 and transverse 2D beam profile at 231 W [24]
    Output power of second stage amplifier [24]
    Fig. 5. Output power of second stage amplifier [24]
    Schematic of optical path for 20 kHz Ho∶YAG Q-switched laser[25]
    Fig. 6. Schematic of optical path for 20 kHz Ho∶YAG Q-switched laser[25]
    Average output powers of R-S-S and T-S-S amplifiers [25]
    Fig. 7. Average output powers of R-S-S and T-S-S amplifiers [25]
    Schematic of 102 W ZGP MOPA system with physical map of ZGP crystal with aperture of 15 mm×15 mm shown in inset[29]
    Fig. 8. Schematic of 102 W ZGP MOPA system with physical map of ZGP crystal with aperture of 15 mm×15 mm shown in inset[29]
    Output power of ZGP OPA [29]
    Fig. 9. Output power of ZGP OPA [29]
    Schematic of optical path for 161 W ZPG MOPA system[25]
    Fig. 10. Schematic of optical path for 161 W ZPG MOPA system[25]
    Average output power of ZGP OPA [25]
    Fig. 11. Average output power of ZGP OPA [25]
    Average output power of idler light at different wavelengths with transmission spectrum of ZGP crystal shown in inset [30]
    Fig. 12. Average output power of idler light at different wavelengths with transmission spectrum of ZGP crystal shown in inset [30]
    Schematic diagram of 11.4 W 8.3 μm cascaded ZGP OPA[31]
    Fig. 13. Schematic diagram of 11.4 W 8.3 μm cascaded ZGP OPA[31]
    Output power of 8.3 μm idler light from ZGP OPA versus 2.8 μm pump power [31]
    Fig. 14. Output power of 8.3 μm idler light from ZGP OPA versus 2.8 μm pump power [31]
    Schematic of optical path for 5.12 W mid-infrared BGSe OPO[35]
    Fig. 15. Schematic of optical path for 5.12 W mid-infrared BGSe OPO[35]
    M2 of ring cavity BGSe OPO signal light at 3.04 W [35]
    Fig. 16. M2 of ring cavity BGSe OPO signal light at 3.04 W [35]
    Schematic of optical path for narrow bandwidth BGSe OPO+ZGP OPA system[36]
    Fig. 17. Schematic of optical path for narrow bandwidth BGSe OPO+ZGP OPA system[36]
    Spectra of signal light and idler light output from ZGP OPA[36]
    Fig. 18. Spectra of signal light and idler light output from ZGP OPA[36]
    Schematic of optical path for seed-injection CdSe OPO[40]
    Fig. 19. Schematic of optical path for seed-injection CdSe OPO[40]
    Output power of 10.1 μm idler light versus pump power under different injection seed laser powers [40]
    Fig. 20. Output power of 10.1 μm idler light versus pump power under different injection seed laser powers [40]
    Characteristics of idler light at 11 μm from seed-injection CdSe OPO[41]. (a) Spectrum; (b) M2 at 802 mW
    Fig. 21. Characteristics of idler light at 11 μm from seed-injection CdSe OPO[41]. (a) Spectrum; (b) M2 at 802 mW
    NameYearWavelength /μmOutput power (energy)Operating modeEfficiency
    Solid-state laser (Fe∶ZnSe)2015[8]4.135.0 W@77 KPulsed-
    2016[9]4.110.60 J@77 KPulsed44%
    2017[10]4.354.601.67 J@ room temperaturePulsed27%
    2020[11]4.354.6021.70 W@ room temperaturePulsed32.6%
    Overtone frequency CO laser2005[12]4.905.702.10 kWCW21%
    Quantum cascade laser2010[13]4.751.10 WCW-
    Free electron laser2011[14]5.75>10.00 kWPulsed-
    2011[14]1.6114.30 kWCW-
    Chemical laser (DF&HF)2010[15]2.604.1067.00 JPulsed3%
    CO2 laser2021[16]9.3140.00 TWPulsed-
    Quantum cascade laser2013[17]10.71.3 WCW-
    Table 1. Latest research results of mid-far infrared laser using linear methods
    NameType-IType-II
    ZGP240 [29]-
    BGSe300 [35]7 [36]
    Table 2. Linewidths of mid-infrared lasers output from ZGP and BGSe crystals under different phase-matching modes unit: nm
    Baoquan Yao, Ke Yang, Shuyi Mi, Junhui Li, Disheng Wei, Jinwen Tang, Long Chen, Xiaoxiao Hua, Chao Yang, Xiaoming Duan, Tongyu Dai, Youlun Ju, Yuezhu Wang. Research Progress of High-Power Ho∶YAG Lasers and Its Application for Pumping Mid-Far-Infrared Nonlinear Frequency Conversion in ZGP, BGSe and CdSe Crystals[J]. Chinese Journal of Lasers, 2022, 49(1): 0101002
    Download Citation