• High Power Laser Science and Engineering
  • Vol. 9, Issue 2, 02000e16 (2021)
M. Galimberti1、*, F. G. Bisesto2, and M. Galletti2
Author Affiliations
  • 1Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, UK
  • 2INFN Laboratori Nazionali di Frascati, Frascati, Italy
  • show less
    DOI: 10.1017/hpl.2020.56 Cite this Article Set citation alerts
    M. Galimberti, F. G. Bisesto, M. Galletti. Innovative single-shot 2D pulse front tilt diagnostic[J]. High Power Laser Science and Engineering, 2021, 9(2): 02000e16 Copy Citation Text show less

    Abstract

    The presence of pulse front tilt (PFT), caused by angular dispersion (AD) in femtosecond laser pulses, could degrade the performance of the laser system and/or impact the experimental yields. We present a single-shot diagnostic capable of measuring the AD in the xy plane by adopting an intensity mask. It can be applied to stretched pulses, making it ideal for diagnosing the AD along the amplification chain of a high-power laser system, and to ultrashort pulses exiting from an optical compressor. In this way, it can help in properly characterizing a laser pulse before it is delivered to the target area. In this Letter, we present experimental evidence of AD retrieval for different compression configurations, supported by theoretical analysis.
    \begin{align*}I\left({r},\lambda \right)\propto {\left|E\left({r},\lambda \right)\right|}^2\propto I\left({r}\right),\end{align*}(1)

    View in Article

    \begin{align}S\left({r},\lambda \right)=\frac{1}{\lambda^2{f}^2}{\left|\int E\left(\rho, \lambda \right)\kern0.1em \exp \left(-i\kern0.1em \frac{2\pi }{\lambda f}{r}\cdot \rho \right)\mathrm{d}\rho \right|}^2,\end{align}((1))

    View in Article

    \begin{align}E\left(\rho, \lambda \right)=\mathrm{\mathcal{M}}\left(\rho \right){E}_0\left(\rho, \lambda \right)\kern0.1em \exp \left[+i\kern0.1em \frac{2\pi }{\lambda}\overline{\alpha}\left(\lambda \right)\cdot \rho \right],\end{align}((2))

    View in Article

    \begin{align}S\left({r},\lambda \right)=\sum\limits_n{\mathcal{G}}_{{n}}\kern0.1em {S}_0\kern0em \left[{r}-f\overline{\alpha}\left(\lambda \right)-\frac{\lambda f}{d}{n},\lambda \right],\end{align}((3))

    View in Article

    \begin{align}{S}_0\left({r},\lambda \right)={I}_0\exp \left[-\frac{1}{2}\frac{{\left|{r}\right|}^2}{\sigma^2}-\frac{1}{2}{\left(\frac{\lambda -{\lambda}_0}{\varDelta}\right)}^2\right].\end{align}((4))

    View in Article

    \begin{align}{I}_x^{\pm}\left(x,y\right)\propto \exp \left\{-\frac{1}{2}\left\{{\left(\frac{x-{x}_{\pm }}{\varOmega_x^{\pm }}\right)}^2+{\left[\frac{y-{A}_x^{\pm}\left(x-{x}_{\pm}\right)}{\sigma}\right]}^2\right\}\right\},\end{align}((5))

    View in Article

    \begin{align}{\varOmega}_x^{\pm }=\frac{f\varDelta}{d}\sqrt{\varGamma \pm 2d{\alpha}_x},\enspace {A}_x^{\pm }&=\pm {\left(\varGamma \pm 2d{\alpha}_x\right)}^{-1}d{\alpha}_y,\notag\\{}{x}_{\pm }=\pm \frac{f{\lambda}_0}{d},\enspace \varGamma &=1+{\left(\frac{d\sigma}{\varDelta f}\right)}^2.\end{align}((6))

    View in Article

    \begin{align}{\alpha}_x-\left({A}_y^{+}+{A}_y^{-}\right)\kern0.1em {\alpha}_y& = \frac{\varGamma }{2d}\left({A}_y^{+}-{A}_y^{-}\right),\notag\\{}{\alpha}_y-\left({A}_x^{+}+{A}_x^{-}\right)\kern0.1em {\alpha}_x& = \frac{\varGamma }{2d}\left({A}_x^{+}-{A}_x^{-}\right),\end{align}((7))

    View in Article

    \begin{align}\varGamma =1+{\left[1-\frac{{\left({\varOmega}_x^{+}\right)}^2+{\left({\varOmega}_x^{-}\right)}^2}{2{\sigma}^2}\right]}^{-1}.\end{align}((8))

    View in Article

    \begin{align}{f}_{\rm opt}\approx \frac{\mathcal{N}{\sigma}_{\rm pxl}d}{2\left({\lambda}_0+\varDelta \right)}.\end{align}((9))

    View in Article

    ((10))

    View in Article

    $$\begin{align*}\mid \alpha \mid \ll 1/d\simeq 6.41\ \mu \hbox{rad/nm}\end{align*}$$(1)

    View in Article

    $$\begin{align*}{\alpha}_{x,y}^{\rm R}=\eta \kern0.1em {\alpha}_{x,y},\end{align*}$$(1)

    View in Article

    $$\begin{align*}\hbox{PFT}=\frac{2{\lambda}_0\kern0.1em \tan {\theta}_{\rm d}}{c\kern0.1em d\kern0.1em \cos {\theta}_{\rm i}}\,\delta \theta, \end{align*}$$(1)

    View in Article

    M. Galimberti, F. G. Bisesto, M. Galletti. Innovative single-shot 2D pulse front tilt diagnostic[J]. High Power Laser Science and Engineering, 2021, 9(2): 02000e16
    Download Citation